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Abstract
This research applies machine learning algorithms to predict the growth rates of bank deposits in
the United States using data from 1973 to 2019. The dataset includes weekly deposit records from
U.S. commercial banks and key macroeconomic indicators, including GDP, inflation, money supply
(M2), recession periods, and interest rates, obtained from the Federal Reserve Economic Data
(FRED). The study involved preprocessing steps including date conversion, stationarity testing
with the Augmented Dickey-Fuller (ADF) test, and differencing to achieve stationarity. Various
models were tested for univariate time series analysis, including SARIMA, Prophet, ETS, LSTM, and
Transformer models. LSTM demonstrated the highest predictive accuracy, with the lowest error
metrics and the highest R² value, proving effective in capturing complex temporal dependencies in
deposit data. The study conducted a multivariable analysis incorporating several macroeconomic
indicators to explore their relationship with bank deposits. This process included feature scaling,
creating lag features, and preserving temporal order during data splitting. Recurrent Neural
Networks (RNNs) were evaluated with different lagged periods to assess their impact on model
performance. The results indicated that while increasing the number of lags improved the model’s
fit to the training data, it did not consistently enhance performance on unseen data, highlighting the
trade-off between model complexity and generalization. Cointegration analysis confirmed long-
term equilibrium relationships between bank deposits and macroeconomic indicators. Further
analysis using FMOLS and DOLS revealed that inflation and recessions negatively impacted
deposits, while M2 and GDP had positive effects. This study demonstrates the effectiveness of
machine learning models, with LSTM proving particularly successful in forecasting bank deposit
growth rates. Incorporating multiple macroeconomic variables significantly enhanced predictive
accuracy, providing valuable insights into the factors influencing deposit levels. This research
contributes to financial forecasting by showcasing the ability of machine learning techniques to
integrate economic dynamics into predictive models. This research contributes to the field of
financial forecasting by demonstrating the efficacy of machine learning techniques in economic
analysis.

Keywords: Bank deposits, Economic indicators, Financial forecasting, Machine learning, Predic-
tive models, Time series analysis, U.S. GDP

1 Introduction
Bank deposit growth is considered as a fundamental indicator of financial stability and the
effectiveness of monetary policy within an economy [1]. A sustained increase in bank deposits
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typically reflects a favorable economic environment where consumers and businesses are more
inclined to save due to stable income levels and positive economic prospects. Conversely, when
deposit growth stagnates or declines [2], it may signal underlying economic concerns, such
as diminished consumer confidence, reduced disposable income, or expectations of adverse
economic conditions. In this context, analyzing trends in deposit growth provides insights into the
broader economic sector and can inform policy decisions aimed at maintaining financial stability
[3] [4].

Sustained Increase
in Bank Deposits

Favorable Eco-
nomic Environment

Stable Income Levels and
Positive Economic Prospects

Stagnation or Decline
in Deposit Growth

Underlying Economic Concerns

Diminished Consumer Confi-
dence, Reduced Disposable
Income, or Expectations of

Adverse Economic Conditions
Figure 1. Mechanism depicting the relationship between bank deposit trends and economic

conditions.

Interest rates play a pivotal role in influencing bank deposit growth. In a low-interest-rate
environment, savers might be disincentivized to keep funds in bank deposits due to the reduced
return on savings, leading to slower growth in deposits. Conversely, higher interest rates often
encourage savings, as the opportunity cost of holding cash or spending increases, leading to
more significant deposit accumulation. Central banks, through their monetary policy tools, can
thus indirectly affect bank deposit growth by adjusting interest rates in response to inflationary
pressures or economic slowdowns. The interplay between interest rates and deposit growth is
complex, as it also depends on the broader economic context, including consumer confidence
and expectations regarding future economic conditions [5] [6].

Inflation is another critical factor that can significantly impact bank deposit growth. In periods
of high inflation, the real value of money decreases, leading consumers and businesses to seek
alternative investment options that may offer better protection against inflationary erosion. This
behavior can result in reduced deposit growth as funds are diverted into assets like real estate,
commodities, or foreign currencies that are perceived as safer or offering higher returns. On
the other hand, in a low inflationary environment, the stability of purchasing power encourages
saving in bank deposits, contributing to their growth. Understanding the relationship between
inflation and deposit behavior is essential for policymakers to design effective strategies that
promote financial stability [7] [8].

Economic growth also exerts a considerable influence on bank deposit trends. In a growing
economy, businesses and consumers typically experience increased earnings and profits, which
can lead to a higher propensity to save, thus bolstering deposit growth. Economic expansion
often leads to job creation, wage increases, and greater disposable income, which all contribute
to higher savings rates. Conversely, during periods of economic contraction or recession, deposit
growth may slow or decline as individuals and businesses draw on their savings to weather
economic hardships. Therefore, tracking bank deposit growth in relation to economic cycles
provides a barometer for assessing the broader economic health [5] [9].

Bank deposit growth is also reflective of the public’s trust and confidence in the financial system.
During times of economic or financial uncertainty, such as a banking crisis or significant market
volatility, depositors may withdraw their funds due to fears of bank insolvency or devaluation,
leading to a decline in deposit growth [4]. Conversely, in a stable financial environment with
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Figure 2. Mechanism illustrating the impact of economic conditions on deposit growth.

robust regulatory frameworks and sound banking practices, deposit growth tends to be stronger
as confidence in the financial system is maintained. Hence, deposit growth not only serves as a
measure of financial health but also as an indicator of the effectiveness of regulatory oversight
and the resilience of the banking sector in the face of external shocks [10].

For financial institutions, the ability to accurately predict deposit growth is critical to maintaining
optimal levels of liquidity, ensuring that they have sufficient funds on hand to meet withdrawal
demands, while also maximizing the utilization of these funds through lending or investment
activities. Liquidity management is a delicate balancing act that requires institutions to anticipate
fluctuations in deposit levels and adjust their liquidity buffers accordingly. Inaccurate predictions
can lead to either a liquidity shortfall, which could necessitate costly borrowing, or excess liquidity,
which might result in suboptimal returns. Thus, sophisticated forecasting models that incorporate
macroeconomic indicators, customer behavior analytics, and market trends are essential tools for
financial institutions to manage their liquidity effectively and avoid potential risks associated with
liquidity mismanagement [11].

Accurate deposit growth predictions also play a significant role in optimizing asset allocation
within financial institutions. By understanding expected deposit trends, institutions can better
plan their portfolio strategies, ensuring that they allocate assets in a manner that aligns with their
liquidity needs and risk appetite. For instance, a forecast of robust deposit growth might enable
a bank to allocate more funds to longer-term, higher-yield investments, knowing that liquidity
is not an immediate concern. Conversely, if a decline in deposits is anticipated, the institution
might shift its focus towards more liquid or short-term assets to maintain financial flexibility.
This strategic alignment of asset allocation with deposit trends is crucial for achieving a balance
between profitability and risk management.
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From a strategic decision-making perspective, deposit growth predictions inform a range of
decisions that impact the long-term direction of a financial institution. For example, anticipated
deposit increases might support the decision to expand lending activities, launch new financial
products, or enter new markets. Conversely, expected stagnation or decline in deposit growth
could prompt institutions to focus on cost control measures, improve operational efficiencies,
or explore alternative revenue streams. Strategic planning based on accurate deposit growth
forecasts helps institutions navigate the complexities of the financial environment and position
themselves for sustainable growth. This proactive approach is essential in an industry where
changes in market conditions or consumer behavior can have significant implications for a bank’s
financial health.

For policymakers, understanding deposit trends is integral to the formulation and adjustment of
monetary policy. Deposits are a primary component of the money supply, and their growth rates
can signal shifts in economic conditions that may require policy interventions. For instance, a
surge in deposit growth might indicate increased savings, potentially reflecting subdued consumer
spending and a slowdown in economic activity, prompting policymakers to consider measures
such as interest rate cuts to stimulate spending. Conversely, sluggish deposit growth might
suggest economic overheating, where tightening monetary policy by raising interest rates could
be necessary to curb inflationary pressures. Thus, deposit trends are a key data point for central
banks in calibrating monetary policy to maintain economic stability.

The impact of deposit growth on money supply and interest rates underscores the intercon-
nectedness of banking operations and macroeconomic policy. Changes in deposit growth can
influence the broader financial environment by altering the availability of funds for lending, which
in turn affects credit conditions and economic activity. For example, rapid deposit growth can
lead to an increase in the supply of loanable funds, exerting downward pressure on interest rates
and potentially stimulating economic expansion. On the other hand, slow deposit growth can
constrain the availability of credit, leading to higher interest rates and potentially dampening eco-
nomic activity [12]. Policymakers carefully monitor deposit trends to ensure that their monetary
policy settings are aligned with the current economic conditions and to mitigate potential risks to
financial stability.

2 Factors Influencing the Deposit Growth
Bank deposit growth rates are significantly influenced by macroeconomic variables such as GDP,
inflation, money supply (M2), recession periods, and interest rates. These factors do not operate in
isolation but interact within a complex economic framework, guided by various economic theories
that help explain their impact on deposit growth. A detailed examination of these interactions,
informed by economic theory, provides a clearer understanding of how these variables shape the
growth of bank deposits.

Increase
in GDP
Y ↑

Increase
in Income
Yd = Y −T

Increase
in Savings
S = sYd

Increase
in Bank
Deposits

Figure 3. Impact of GDP Growth on Bank Deposit GrowthTheory: Marginal Propensity to Save (MPS), S = sYd [13]

GDP is a fundamental indicator of economic activity and directly influences bank deposits. Ac-
cording to classical economic theory, an increase in GDP typically leads to higher incomes, which
in turn increases the marginal propensity to save. This increase in savings is often reflected in
higher bank deposits. The life-cycle hypothesis (LCH), proposed by Franco Modigliani, further
elaborates on this by suggesting that individuals plan their savings over their lifetime, saving more
during their working years to fund retirement. As GDP grows, individuals may increase their
savings to secure their future, leading to a rise in bank deposits.

However, the relationship between GDP and deposit growth is not always straightforward. The
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Figure 4. Effect of Inflation on Real Interest Rate and Bank Deposit GrowthTheory: Fisher Equation, r = i − π [14]

Keynesian consumption function suggests that as people’s incomes rise, their consumption also
increases, though not necessarily at the same rate. This could lead to a slower growth rate in
savings and, consequently, in bank deposits, especially if the increased income is largely directed
toward consumption rather than savings. Additionally, in economies with sophisticated financial
markets, individuals might divert a larger portion of their income to investments in stocks, bonds,
or other financial instruments, reducing the amount that ends up as bank deposits. This behavior
aligns with the portfolio theory, which suggests that individuals allocate their wealth across
different assets to maximize returns and minimize risk.

Increase in
Money Supply

M ↑

Increase in
Liquidity
MV = PY

Potential Increase
in Inflation

π ↑

Initial Increase in
Bank Deposits

Decrease in Real
Value of Deposits

Figure 5. Impact of Money Supply (M2) on Bank Deposit GrowthTheory: Quantity Theory of Money, MV = PY [15]

Inflation, which measures the general rise in price levels, has a complex impact on bank deposit
growth, mediated through its effect on real and nominal interest rates. According to the Fisher
effect, nominal interest rates are adjusted to compensate for expected inflation, meaning that
higher inflation typically leads to higher nominal interest rates. This adjustment is intended to
preserve the real rate of return on deposits, thereby maintaining the incentive to save. However, if
inflation rises faster than nominal interest rates, the real interest rate (nominal rate minus inflation)
could become negative, discouraging savings and reducing bank deposit growth. The theory of
rational expectations also plays a role here, as individuals form expectations about future inflation
and adjust their saving and investment behavior accordingly. If they expect inflation to persist,
they might shift their savings from bank deposits to assets that are perceived as better hedges
against inflation, such as real estate or commodities.

Economic Recession
Y ↓

Increased
Precautionary Savings

Increase in Savings
S = S (Y , r ,σ)

Increase in
Bank Deposits

Figure 6. Effect of Recession on Bank Deposit Growth Through Precautionary SavingsTheory: Precautionary Savings Function, S = S (Y , r ,σ) [16]

In extreme cases, such as hyperinflation, confidence in the currency can collapse, leading to
a sharp reduction in bank deposits as individuals seek to protect their wealth through foreign
currency holdings or tangible assets. This phenomenon is consistent with the quantity theory
of money, which posits that a rapid increase in the money supply, if not matched by an increase
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in real output, leads to inflation. If inflation expectations become unanchored, people might
withdraw their deposits en masse, leading to a contraction in the deposit base.

The money supply, specifically M2, which includes cash, checking deposits, and easily convertible
near money, is another critical factor influencing bank deposit growth. The quantity theory of
money, articulated by economists like Milton Friedman, suggests that an increase in the money
supply, holding velocity and output constant, should lead to a proportional increase in nominal
GDP and price levels. When the central bank expands the money supply, typically through open
market operations or other forms of monetary stimulus, the immediate effect is often an increase
in bank reserves and deposits.

However, the long-term impact on bank deposits depends on how this increased money supply is
utilizedwithin the economy. If the expansion inM2 leads to higher inflationwithout corresponding
real GDP growth, the real value of deposits could decline, reducing the incentive to hold money in
banks. This outcome aligns with the expectations-augmented Phillips curve, which suggests that
if monetary expansion leads to inflation without reducing unemployment, inflationary pressures
will erode real returns, discouraging savings. Conversely, if the increase in M2 corresponds with
genuine economic growth, deposit growth may be sustained as the economy expands and savings
increase in tandem.

Increase in
Interest Rates

r ↑

Increase in
Opportunity Cost
of Consumption

C ↓

Increase in
Savings
S = S (r )

Increase in
Bank Deposits

Figure 7. Impact of Interest Rates on Bank Deposit GrowthTheory: Loanable Funds Theory, S = S (r ) [17]

Recession periods present a unique context for bank deposit growth, often leading to seemingly
paradoxical effects. During recessions, economic activity contracts, leading to lower incomes and
reduced consumption. However, the uncertainty and fear associated with recessions often lead
to an increase in precautionary savings. The permanent income hypothesis (PIH), developed by
Milton Friedman, suggests that individuals base their consumption on expected lifetime income
rather than current income. During a recession, when future income prospects are uncertain,
individuals might increase their savings to smooth consumption over time, leading to an increase
in bank deposits.

This behavior is further explained by the concept of the precautionary motive for saving, where
individuals hold more liquid assets, such as bank deposits, during periods of economic uncertainty
to hedge against future income shocks. The paradox of thrift, a concept introduced by Keynes,
also plays a role here. As individuals and businesses collectively increase their savings during a
recession, overall demand in the economy may decrease, potentially prolonging the recession.
This increased saving, while stabilizing individual finances, can lead to higher bank deposits in the
short term.

The impact of recessions on bank deposits also depends on the type of recession and the accom-
panying policy responses. In a financial crisis-induced recession, such as the 2007-2008 Global
Financial Crisis, there might initially be a sharp decline in deposits as financial institutions face
liquidity issues and depositor confidence wanes. However, aggressive monetary interventions by
central banks, such as lowering interest rates and implementing quantitative easing, can restore
confidence and lead to a recovery in deposits as the economy stabilizes.

Interest rates, both nominal and real, are crucial in determining bank deposit growth. The classical
loanable funds theory posits that the interest rate is determined by the supply of and demand
for loanable funds. When interest rates are high, saving becomes more attractive, leading to an
increase in bank deposits. This relationship is straightforward: higher interest rates increase the
opportunity cost of consuming today rather than saving, thus encouraging individuals to defer
consumption and increase savings.
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However, in a low-interest-rate environment, the situation becomes more complex. If nominal
interest rates are low and inflation is moderate, the real return on bank deposits might be close
to zero or even negative. According to the liquidity preference theory, developed by Keynes,
individuals prefer to hold money (or liquid assets) when interest rates are low because the
opportunity cost of holding money is minimal. In such cases, deposit growth might still be
sustained if banks are perceived as safe havens during economic uncertainty, even though the
returns on deposits are low.
The Taylor rule, a principle guiding central banks on setting interest rates based on economic
conditions, provides further insight. According to the Taylor rule, central banks adjust nominal
interest rates based on deviations of actual inflation from target inflation and actual GDP from
potential GDP. In periods of low inflation and below-potential GDP, central banks might lower
interest rates to stimulate economic activity. While this could reduce the attractiveness of bank
deposits due to lower returns, the overall impact on deposit growth depends on whether the
lower interest rates succeed in stimulating economic activity and boosting income levels, which
could eventually lead to higher deposit growth.
The theory of financial repression, where governments keep interest rates artificially low to reduce
the cost of public debt servicing, also impacts deposit growth. In such environments, savers might
receive negative real returns on their deposits, discouraging savings in traditional bank accounts.
However, if there are capital controls or other restrictions that limit the ability to move funds
out of the banking system, deposits might still grow, driven more by necessity than by attractive
returns.

3 Challenges in Traditional Predictive Models
Traditional models for predicting bank deposit growth, such as autoregressive integrated moving
average (ARIMA) and vector autoregression (VAR), have relied heavily on historical data and linear
relationships [18]. These models often fall short in capturing the complexities of financial data,
which are influenced by a multitude of factors that exhibit nonlinear and dynamic behaviors. The
increasing volatility in financial markets and the intricate interdependencies among macroeco-
nomic variables have highlighted the limitations of these traditional approaches. As a result, there
is a growing need for more sophisticated models that can handle large datasets, uncover hidden
patterns, and improve predictive accuracy [19].

Challenges in Traditional Predictive Models Machine Learning as an Advanced AnalyticalTool
Traditional models such as ARIMA and VAR
rely heavily on historical data and linear rela-
tionships.

Machine learning can analyze large datasets
and identify complex patterns not apparent
with traditional methods.

Thesemodels often fail to capture the complex-
ities of financial data, influenced by nonlinear
and dynamic behaviors.

Machine learning models nonlinear relation-
ships and adapts to changing data distributions,
making it suitable for financial forecasting.

Increasing volatility in financial markets and
intricate interdependencies among macroeco-
nomic variables limit the effectiveness of tradi-
tional approaches.

Machine learning can integrate temporal de-
pendencies with macroeconomic variables, of-
fering a holistic view of factors driving bank
deposit growth.

There is a need for more sophisticated models
to handle large datasets, uncover hidden pat-
terns, and improve predictive accuracy.

The flexibility of machine learning algorithms,
from simple regressions to complex neural net-
works, allows for tailored approaches to spe-
cific data challenges.Table 1. Comparison of Traditional Predictive Models and Machine Learning in Financial

Forecasting

Machine Learning as an Advanced Analytical Tool Machine learning has emerged as a powerful
tool for analyzing large datasets and identifying complex patterns that are not readily apparent
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with traditional statistical methods. Its ability to model nonlinear relationships and adapt to
changing data distributions makes it suitable for financial forecasting. In the context of bank
deposit growth, machine learning can integrate temporal dependencies with macroeconomic
variables, providing a more holistic view of the factors driving deposit trends. The flexibility of
machine learning algorithms, ranging from simple regression models to complex neural networks,
allows for tailored approaches that can address specific challenges in the data.

4 Research objective
The banking sector relies heavily on accurate forecasting to maintain stability and foster growth.
Predicting deposit growth is crucial as it directly influences liquidity management, credit allocation,
and overall financial health. Traditional statistical methods, while useful, often fall short in
capturing the complex, nonlinear relationships inherent in economic data. Machine learning, with
its advanced computational capabilities and adaptability, offers a promising alternative. This paper
investigates the efficacy of ML algorithms in predicting U.S. bank deposit growth through both
univariate and bivariate analyses, aiming to enhance understanding of temporal dependencies
and macroeconomic interrelationships.

5 Methods
Recurrent Neural Networks (RNNs) are a class of artificial neural networks where connections
between nodes form a directed graph along a sequence, allowing the model to exhibit dynamic
temporal behavior [20]. Unlike feedforward neural networks, RNNs can use their internal state
(memory) to process sequences of inputs, making them well-suited for tasks where data is sequen-
tial, such as time series analysis, language modeling, and speech recognition. The architecture
of an RNN allows it to maintain a hidden state that captures information about previous inputs,
which is updated at each time step based on both the current input and the previous hidden state.
This recursive process can be mathematically described as:

ht = σ (Wh · ht−1 +Wx · xt + bh)

yt = σ (Wy · ht + by )

where ht represents the hidden state at time t , xt is the input at time t ,Wh andWx are weight
matrices, bh and by are bias terms, and σ is an activation function, typically a sigmoid or hyperbolic
tangent. Despite their theoretical appeal, standard RNNs suffer from several practical issues,
notably the vanishing gradient problem, where gradients of the loss function with respect to the
weights diminish exponentially as they are propagated back through time. This issue severely
hampers the learning of long-term dependencies. Various extensions of RNNs, such as Long
Short-Term Memory (LSTM) [21] and Gated Recurrent Units (GRUs), have been developed to
mitigate these problems by introducing mechanisms that better capture long-term dependencies.
Cointegration tests, often employed in econometrics, are crucial when analyzing non-stationary
time series data to determine whether a linear combination of two or more series can result in
a stationary series [22]. Cointegration implies a long-run equilibrium relationship between the
series, even though the individual series themselves may be non-stationary. The Engle-Granger
test, Johansen test, and Phillips-Ouliaris test are among the most commonly used cointegration
tests. The Engle-Granger test involves first estimating the long-term relationship using ordinary
least squares (OLS) and then applying an Augmented Dickey-Fuller (ADF) test on the residuals to
check for stationarity. The Johansen test, on the other hand, is a more comprehensive method
that allows for multiple cointegrating relationships and is based on a Vector Autoregressive
(VAR) model [23]. The test statistic for the Johansen test is derived from the eigenvalues of
the stochastic matrix formed by the VAR process, and the number of cointegrating vectors is
determined based on trace and maximum eigenvalue statistics. The mathematical expression
for the Engle-Granger cointegration test is as follows [24]. Suppose we have two non-stationary
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series yt and xt . The cointegration relationship can be modeled as:

yt = α + βxt + ut

where ut represents the residuals. If ut is stationary, then yt and xt are cointegrated. The ADF test
is then applied to ut to determine whether it is stationary. The null hypothesis H0 of the Engle-
Granger test is that ut has a unit root (i.e., it is non-stationary), which implies no cointegration.
Parameter instability is another critical concern in time series analysis when dealing with models
that are estimated over long periods where structural breaks or changes in the underlying data-
generating process might occur. The Hansen Parameter Instability test is a statistical method
used to assess whether the parameters of a model are stable over time. This test is based on the
recursive estimation of the model and examines the stability of the parameters by comparing
estimates from different sub-samples of the data. The test statistic, denoted as λmax, is computed
from the largest eigenvalue of the covariance matrix of the recursive residuals. The test’s null
hypothesis is that the parameters are stable over time, and rejection of this hypothesis suggests
the presence of structural breaks or non-constant parameters.
The Dynamic Ordinary Least Squares (DOLS) estimator is a technique designed to provide robust
estimates in cointegrated systems by addressing endogeneity and serial correlation issues. DOLS
extends the standard OLS by including leads and lags of the differenced explanatory variables,
thereby removing endogeneity in the cointegrating equation. The inclusion of these leads and
lags serves to account for the feedback effects from the dependent variable to the explanatory
variables, which are typical in cointegrated systems. The DOLS estimator can be expressed as:

yt = α + βxt +
q∑

j=−p
γj∆xt+j + ut

where ∆xt+j represents the lead or lag of the differenced explanatory variable, and p and q denote
the number of leads and lags, respectively. The resulting estimator is asymptotically efficient and
has desirable small-sample properties, making it a popular choice for estimating cointegrating
relationships.
Fully-Modified Ordinary Least Squares (FM-OLS) is another method for estimating cointegrating
vectors in the presence of non-stationarity. FM-OLS improves upon standard OLS by correcting
for the effects of serial correlation and endogeneity in the regressors. This correction is achieved
by modifying the OLS estimator to account for the long-run covariance between the regressors
and the error term. The FM-OLS estimator involves two main adjustments: first, adjusting the
OLS residuals for serial correlation by using non-parametric estimates of the long-run variance,
and second, correcting the OLS estimates for endogeneity by incorporating a correction term
based on the covariance between the regressors and the error term. The FM-OLS estimator
is useful in situations where the cointegrating relationship involves multiple variables and the
regressors exhibit endogeneity or serial correlation.
The mathematical representation of the FM-OLS estimator can be described as follows. Consider
a cointegrated system represented by:

yt = α + βxt + ut

where ut is the error term, which may be serially correlated and correlated with xt . The FM-OLS
estimator modifies the standard OLS estimator by adjusting the residuals and incorporating a
correction term β̂FM −OLS to account for the bias induced by endogeneity and serial correlation:

β̂FM −OLS = β̂OLS − Γ̂x y Ω̂
−1
xx

where Γ̂x y is the covariance matrix between the residuals and the regressors, and Ω̂xx is the long-
run variance of the regressors. This adjustment ensures that the FM-OLS estimator is consistent
and asymptotically efficient, even in the presence of endogeneity and serial correlation.
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6 Data
The study utilizes data on deposits at all commercial banks in the United States from 1973 to 2019,
recorded in billions of U.S. dollars. This dataset is seasonally adjusted and measured on a weekly
basis, providing a detailed and continuous view of the trends and fluctuations in bank deposits
over an extensive historical period. In addition to deposit data, several key macroeconomic
indicators are included to enhance the analysis: Gross Domestic Product (GDP), inflation rates,
money supply (M2), recession periods, and interest rates.

GDP data is measured quarterly in billions of dollars and adjusted for seasonal variations on an
annual basis, offering insights into the overall economic activity and growth within the country.
Inflation rates are derived from the Consumer Price Index (CPI) and reflect the rate at which
the general level of prices for goods and services rises, eroding purchasing power. The money
supply (M2) includes cash, checking deposits, and easily convertible near money, which provides
a broader view of the liquidity available in the economy. Recession periods are identified based
on the National Bureau of Economic Research (NBER) business cycle dating, and interest rates
are tracked to understand their impact on both deposit levels and broader economic conditions.

All of these datasets are sourced from the Federal Reserve Economic Data (FRED) provided by the
Federal Reserve Bank of St. Louis, a reliable and widely used source for economic and financial
data.

7 Preprocessing
Preprocessing steps include converting the relevant date column to a datetime format to facilitate
its use in time series analysis. The study then checks for missing values in the target column, and
if any are found, their count is output for further handling if necessary.

Preprocessing steps:

Date Conversion: Convert the date column t to
datetime format.

Missing Values Check: Check and count missing
values in the target column y (t ).

Stationarity Check: Apply the ADF test to y (t ) to
check for stationarity.

Differencing: Apply differencing ∆y (t ) = y (t ) −
y (t − 1) to make the series stationary.

Rechecking: Reapply the ADF test to ∆y (t ) to
confirm stationarity.

Data Splitting: Split data into 80% training and
20% testing sets.

Figure 8. Preprocessing Steps

Stationarity is a fundamental concept in time series analysis, referring to a time series whose
statistical properties, such as mean, variance, and autocorrelation, are constant over time. Math-
ematically, a time series {yt } is stationary if for all t , the joint probability distribution does not
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change when shifted in time. This implies that Å[yt ] = µ, Var(yt ) = σ2, and the covariance
Cov(yt , yt+h) depends only on the lag h and not on time t . Stationarity is a crucial assumption in
many statistical and econometric models, such as those used for forecasting, as it ensures that
the model’s parameters remain consistent over time.
The Augmented Dickey-Fuller (ADF) test is a widely used statistical test for stationarity, specifically
for detecting the presence of a unit root in a time series. The presence of a unit root indicates
that the series is non-stationary and exhibits a stochastic trend. The ADF test is an extension of
the Dickey-Fuller test and includes lagged differences of the series to account for higher-order
autocorrelations. The test is based on estimating the following regression model:

∆yt = α + β t + γyt−1 +
p∑
i=1

δi∆yt−i + ϵt ,

where ∆yt = yt − yt−1 is the first difference of the series, α is a constant, β t is a time trend, and p
is the number of lagged differences included in the model. The null hypothesis H0 : γ = 0 suggests
that the series has a unit root, implying non-stationarity.
The test statistic for the ADF test is compared to critical values from the Dickey-Fuller distribution
to determine whether to reject the null hypothesis. If the test statistic is less than the critical value,
the null hypothesis of a unit root is rejected, indicating that the series is stationary. However, if
the series is non-stationary, differencing can be applied to transform it into a stationary series.
Differencing involves subtracting the previous observation from the current observation, mathe-
matically expressed as ∆yt = yt − yt−1. If the series is differenced d times to achieve stationarity,
it is said to be integrated of order d , denoted as I (d ).
The process of differencing is a common technique tomake a time series stationary. By differencing
the series, we remove trends and seasonal structures, thereby stabilizing the mean of the series.
For example, first differencing a series involves transforming yt to ∆yt = yt − yt−1, while second
differencing, if necessary, involves differencing the first differences: ∆2yt = ∆yt − ∆yt−1. If a
series is differenced once and achieves stationarity, it is said to be integrated of order one, or
I (1). In practice, most non-stationary time series can be made stationary through first or second
differencing.
After differencing, it is standard practice to reapply the ADF test to confirm the stationarity
of the differenced series. If the test confirms that the differenced series is stationary, we can
proceed with modeling or forecasting using methods that assume stationarity. The importance of
ensuring stationarity lies in the fact that most time series models, such as ARIMA (AutoRegressive
Integrated Moving Average) models, require the input series to be stationary for the results to
be valid and reliable. Therefore, the combination of differencing and the ADF test is a powerful
approach for preparing non-stationary time series data for analysis.
To assess the stationarity of the time series, the Augmented Dickey-Fuller (ADF) test is applied
to the target column, with the ADF statistic and p-value printed for evaluation. If the series is
determined to be non-stationary, differencing is applied to make it stationary, and the resulting
differenced series is stored in a new column. The stationarity of this differenced series is rechecked
by applying the ADF test again to confirm that the series has become stationary. Subsequently,
the dataset is split into training and testing sets, with 80% of the data allocated to the training
set and 20% to the testing set, and the sizes of these sets are printed. In this specific case,
no missing values were found. The initial ADF statistic was 2.6176 with a p-value of 0.9991,
indicating non-stationarity, while after differencing, the ADF statistic was -5.9634 with a p-value
of 2.01e-07, confirming that the series became stationary.

8 Results
The results of this study present a detailed evaluation of various predictive modeling techniques
applied to forecast the growth rates of bank deposits in the United States, based on historical data
from 1973 to 2019. The analysis is divided into two main parts: univariate time series analysis
and bivariate analysis incorporating GDP data.
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Description Value
No missing values found —
ADF Statistic 2.6176313640743274
p-value 0.9990782084455896
ADF Statistic after differencing -5.963421789813776
p-value after differencing 2.0138275665144432e-07Table 2. ADF Test Results

8.1 Univariate temporal dependencies analysis results
In the univariate time series analysis, five different models were applied: SARIMA, Prophet,
ETS, LSTM, and Transformer. Each model’s performance was evaluated using metrics such as
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE), and R-squared (R²). The SARIMA model, commonly used for time series forecasting,
showed moderate predictive capability with a relatively high error (MAE of 2179.148 and RMSE
of 2925.733) and a negative R² value of -0.0381. The negative R² indicates that the model does
not explain the variability in the deposit data well and performs worse than a simple mean-based
prediction.

Model MAE RMSE MAPE R²
SARIMA 2179.1480 2925.7333 13.6149 -0.0381
Prophet 1596.4204 2210.0113 nan 0.4077
ETS 3931.9758 4868.9082 25.4012 -1.8749
LSTM 767.6600 987.4566 21.1641 0.8797
Transformer 1970.7211 2810.7283 11.9358 0.0268Table 3. Performance Metrics for Different Forecasting Models

The Prophet model, which is designed for time series with strong seasonal effects and missing
data, performed better than SARIMA, with lower error metrics (MAE of 1596.420 and RMSE
of 2210.011) and a positive R² value of 0.4077, indicating a better fit to the data. However,
the model’s inability to compute MAPE suggests potential issues with handling certain data
characteristics. The ETS model, which is based on exponential smoothing, performed poorly, with
the highest error metrics (MAE of 3931.976 and RMSE of 4868.908) and a negative R² value of
-1.8749. This performance indicates that ETS was not well-suited to this time series data, possibly
due to its inability to capture the underlying patterns effectively.

The LSTM model demonstrated the strongest performance among the univariate models, with
the lowest error metrics (MAE of 767.660 and RMSE of 987.457) and a high R² value of 0.8797.
This result indicates that LSTM, a type of recurrent neural network capable of learning long-term
dependencies, was effective in modeling the complex temporal patterns in the bank deposit data.
The Transformer model, another deep learning approach, showed moderate performance with
an MAE of 1970.721, RMSE of 2810.728, and an R² value of 0.0268. While it outperformed
SARIMA and ETS, its performance was still inferior to LSTM, possibly due to its architectural
differences in handling sequential data.

8.2 Multivariable Macroeconomic Interrelationship analysis results
Epoch 49/50
5/5 0s 19ms/step - loss: 6.6809e-06 - val_loss: 0.0048
Epoch 50/50
5/5 0s 21ms/step - loss: 7.2623e-06 - val_loss: 0.0048
5/5 1s 68ms/step
2/2 0s 6ms/step
Training MSE: 6.544580421788998e-06
Training MAE: 0.0016377903880896445
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Training RMSE: 0.0025582377570876787
Testing MSE: 0.00480853216587751
Testing MAE: 0.04463006866046173
Testing RMSE: 0.0693435805671838

Hansen Parameter Instability Cointegration Test
Statistic Stochastic Trends (m) Deterministic Trends (k) Excluded Trends (p2) Probability
Lc statistic 0.005430 4 0 > 0.2Table 4. Results of the Hansen Parameter Instability Cointegration Test for the series DEPOSIT,

GDP, INFLATION, M2, and RECESSION, testing the null hypothesis that the series are
cointegrated. The cointegrating equation includes a constant (C). The p-values are based on
Hansen (1992b) Lc(m2=4, k=0) distribution, where m2=m-p2 represents the number of

stochastic trends in the asymptotic distribution.

Table 5. Dynamic Least Squares (DOLS) Results
Dependent Variable: DEPOSITMethod: Dynamic Least Squares (DOLS)Sample (adjusted): 1973Q3 2019Q4Cointegrating equation deterministics: CFixed leads and lags specification: lead=1, lag=1Long-run variance estimate Bartlett kernel, Newey-West fixed bandwidth = 5.0000Variable Coefficient Std. Error t-Statistic Prob.
GDP 0.086350 0.031011 2.784516 0.0059
INFLATION -191.5082 90.70594 -12.111308 0.0361
M2 0.793206 0.038194 20.76788 0.0000
RECESSION -129.1248 168.1273 -10.768018 0.0435
C -681.7733 169.2787 -4.027519 0.0001R-squared 0.997471 Mean dependent var 5339.653Adjusted R-squared 0.997251 S.D. dependent var 4762.715S.E. of regression 249.7143 Sum squared resid 11473730Long-run variance 273033.1

Table 6. Fully Modified Least Squares (FMOLS) Results
Dependent Variable: DEPOSITMethod: Fully Modified Least Squares (FMOLS)Sample (adjusted): 1973Q2 2019Q4Cointegrating equation deterministics: CLong-run covariance estimate Bartlett kernel, Newey-West fixed bandwidth = 5.0000Variable Coefficient Std. Error t-Statistic Prob.
GDP 0.061361 0.027335 2.244762 0.0259
INFLATION -55.67781 56.49245 -22.985580 0.0255
M2 0.811519 0.033803 24.00733 0.0000
RECESSION -140.4528 109.3293 -11.284677 0.0004
C -527.3452 135.3257 -3.896858 0.0001R-squared 0.995559 Mean dependent var 5375.492Adjusted R-squared 0.995469 S.D. dependent var 4825.022S.E. of regression 324.7814 Sum squared resid 20885625Long-run variance 307742.1

In the Multivariable analysis, the performances of Recurrent Neural Networks (RNNs) across
different lagged periods show how lag selection affects the model’s predictive accuracy. Starting
with a single lagged period, the model showed a steady improvement in loss metrics throughout
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Figure 9. Comparison of Coefficients from FMOLS and DOLS Models

the training process. By the final epoch, the training loss was 0.0606, with a validation loss of
0.0455. The training Mean Squared Error (MSE) was 0.0598, and the Root Mean Squared Error
(RMSE) was 0.2446, indicating a decent level of accuracy. The model’s performance on the testing
data was slightly better, with a testing MSE of 0.0455, suggesting that the model generalizes well
with this lag configuration.

Increasing the lagged period to two introduced some changes in the model’s performance. The
final training loss decreased to 0.0538, but the validation loss increased slightly to 0.0574,
indicating potential overfitting. The training MSE for this configuration was 0.0546, with an RMSE
of 0.2337. The testing phase showed a slight increase in errors, with a testing MSE of 0.0574 and
an RMSE of 0.2396. These results suggest that while the model’s training performance improved
slightly, its generalization to unseen data did not improve and may have worsened.

When extending the lagged period to three, the model’s performance exhibited further nuances.
The training loss continued to decrease, reaching 0.0475 by the final epoch, but the validation
loss remained relatively stable at 0.0545. The training MSE was 0.0458, with an RMSE of 0.2139.
However, the testing performance did not improve significantly, as indicated by a testing MSE of
0.0545 and an RMSE of 0.2335. This suggests that increasing the lagged period further did not
lead to a substantial improvement in model performance, and the benefit of additional lags might
be diminishing.

With a four-lagged period, the model’s performance metrics showed a different trend. The training
loss dropped to 0.0301, the lowest observed across all configurations, suggesting that the model
was fitting the training data very well. However, the validation loss increased to 0.0709, indicating
a higher level of overfitting. The training MSE was 0.0259, with an RMSE of 0.1610, which is the
lowest among all models. Despite the low training error, the testing MSE increased to 0.0709,
and the RMSE rose to 0.2663, indicating that the model’s ability to generalize to new data had
decreased as the lagged period increased.

These results indicate that while increasing the number of lagged periods in an RNN can improve
the model’s fit to the training data, it does not necessarily translate to better performance on
unseen data. There is a trade-off between fitting the training data and generalizing to new data,
and the optimal lag configuration appears to be a balance between these two factors.

In addition to these RNN results, the cointegration analysis using Hansen’s parameter instability
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test for the series DEPOSIT, GDP, INFLATION, M2, and RECESSION was conducted. The null
hypothesis, which posits that the series are cointegrated, was not rejected given the Lc statistic
of 0.005430 with a probability value greater than 0.2. This suggests that the variables share a
long-term equilibrium relationship, despite short-term deviations.
Further econometric analysis was conducted using Fully Modified Least Squares (FMOLS) and
Dynamic Least Squares (DOLS) methods to estimate the long-run relationships among these
variables. The FMOLS results indicate that GDP has a positive coefficient of 0.0614, suggesting a
direct but modest impact on DEPOSIT levels. Inflation has a significant negative impact, with
a coefficient of -55.6778, reflecting its adverse effect on deposits. M2, representing money
supply, has a strong positive coefficient of 0.8115, indicating its crucial role in determining deposit
levels. The RECESSION variable has a significant negative effect, with a coefficient of -140.4528,
indicating that economic downturns significantly reduce deposit levels. The model’s R-squared
value of 0.9956 suggests that the explanatory variables account for nearly all the variance in
DEPOSIT levels, with a high degree of precision in the long-run variance estimate.
The DOLS estimation, with a lag of one period, produced similar results, albeit with some dif-
ferences in the magnitude of coefficients. GDP’s impact was slightly higher at 0.0864, while
the negative effect of inflation increased significantly to -191.5082. M2’s influence remained
strong, with a coefficient of 0.7932, and the recession’s negative impact was slightly less severe
at -129.1248. The model’s R-squared was slightly higher at 0.9975, further supporting the strong
explanatory power of the selected variables.
The LSTM model emerged as the most effective univariate model for predicting bank deposit
growth rates, demonstrating its ability to capture complex temporal dependencies in the data.
in the multivariable analysis, the RNN models demonstrated varying degrees of effectiveness
based on the number of lagged periods, with the model performance generally decreasing as the
lag increased beyond one or two periods, suggesting potential overfitting with more complex
configurations. The cointegration analysis confirmed the long-term equilibrium relationship
between DEPOSIT and the other economic indicators, with both FMOLS and DOLS methods
highlighting the significant impact of these variables on DEPOSIT, albeit with some differences in
the magnitude of their influence. These findings provide a robust understanding of the dynamic
relationships and suggest the importance of selecting lagged periods in time series models to
balance model complexity and generalization performance.

9 Policy implications
9.1 Regulatory Oversight and Policy Formulation
The results of the study highlight the need for robust regulatory oversight. The differing perfor-
mances of models like SARIMA, Prophet, ETS, LSTM, and Transformer indicate that not all models
are equally effective in capturing the complexities of financial data. Regulatory frameworks must
ensure that financial institutions use models that are both reliable and appropriate for the data
they analyze.
LSTM models, which outperformed traditional statistical models, exemplify the shift toward
machine learning in financial forecasting. However, the poor performance of models like SARIMA
and ETS suggests that outdated approaches still in use may not effectively capture financial trends.
This discrepancy calls for regulatory bodies to update guidelines and standards, ensuring that
institutions adopt advanced models where appropriate while maintaining rigorous standards for
model validation, governance, and transparency.
The study also emphasizes the importance of integratingmacroeconomic factors likeGDP, inflation,
and money supply into regulatory oversight. Traditional economic theories, such as the Quantity
Theory of Money, suggest a direct link between money supply and nominal deposits, which
aligns with the study’s findings. However, the adverse impact of inflation on deposits complicates
this relationship, underscoring the need for regulatory policies that account for both short-term
fluctuations and long-term trends. Regulators, including the Federal Reserve and the Office of
the Comptroller of the Currency (OCC), should incorporate the findings from advanced predictive
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Table 7. Regulatory Oversight and Policy Formulation
Aspect Requirement Description
Model Risk Management AdvancedModel Adoption Financial institutions should adopt mod-

els like LSTM for improved accuracy in
forecasting.

Governance Continuous Model Valida-
tion

Ongoing validation and review of mod-
els to ensure compliance with regulatory
standards.

Macroeconomic Integration Incorporate Economic Indi-
cators

Regulatory policies should integrate in-
dicators like GDP, inflation, and M2 for
better oversight.

Stress Testing Enhanced Scenario Analy-
sis

Use advanced models in stress testing
to evaluate resilience under adverse eco-
nomic conditions.

models into their macroprudential oversight. The study’s identification of long-term relationships
between deposits and key economic indicators suggests that these variables should be closely
monitored to manage systemic risks effectively. Systemic risk management, aimed at preventing
the collapse of financial systems, can benefit from the predictive power of models like LSTM and
RNNs, which can anticipate the effects of macroeconomic shocks on deposits.

Stress-testing models that incorporate advanced findings should be a regulatory priority. Such
models can help financial institutions evaluate their resilience under adverse conditions. By
adopting advanced machine learning models in stress testing, regulators can better assess the
vulnerabilities within the banking system and take steps to mitigate risks. Financial institutions
must align with evolving regulatory standards by adopting advanced predictive modeling tech-
niques. The findings indicate that traditional models may no longer suffice in understanding
modern financial markets. Therefore, institutions should invest in developing and deploying ma-
chine learning models like LSTM to enhance forecasting accuracy and improve risk management.
Model validation and governance, as outlined in regulatory guidelines like BCBS 239, are essential
for the successful adoption of these models. Financial institutions should implement robust
validation frameworks that evaluate model accuracy, robustness, and interpretability, ensuring
compliance with regulatory standards. Governance structures must support ongoing review and
documentation of these models to manage potential risks effectively.

9.2 Implications for Monetary Policy and Economic Stability
The study’s findings have significant implications for monetary policy, particularly in managing the
relationship between bank deposits and macroeconomic factors like GDP, inflation, and money
supply. Understanding these relationships is crucial for formulating policies that ensure economic
stability.

Table 8. Implications for Monetary Policy and Economic Stability
Variable Effect Monetary Policy Implication
Money Supply (M2) Positive Influence on Deposits Expansion of money supply can increase

deposit levels; central banks shouldman-
age M2 to ensure liquidity.

Inflation Erosion of Deposit Value High inflation negatively impacts the
real value of deposits; monetary policy
should focus on maintaining price stabil-
ity.

Economic Cycles Cyclical Impact on Deposits Recessions reduce deposit levels; coun-
tercyclical policies can help stabilize de-
posit growth during downturns.
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The positive relationship between money supply (M2) and bank deposits, as revealed by the
study, underscores the importance of liquidity management in monetary policy. According to
the Quantity Theory of Money, increasing the money supply should boost nominal deposits,
enhancing liquidity within the banking system. However, the study also reveals that inflation
negatively impacts deposit levels, consistent with the Fisher Equation, which relates nominal
interest rates to real interest rates and inflation. This suggests that central banks must balance
stimulating economic growth through monetary expansion with maintaining price stability to
prevent deposit erosion.
Recessions significantly impact deposit levels, reflecting the cyclical nature of economic activity.
The study’s findings align with the financial accelerator theory, which suggests that economic
shocks are amplified by financial market frictions, leading to deeper downturns. This insight
emphasizes the need for countercyclical monetary policies that stabilize deposit levels during
downturns, helping to maintain overall economic stability.
Monetary policy can mitigate the cyclical effects of economic fluctuations by adjusting interest
rates to support deposit levels during downturns and control inflation during expansions. This
approach helps to manage the economy’s cyclical nature and protect financial stability.

9.3 Strategic Implications for Financial Institutions
The study provides actionable insights for financial institutions in managing deposit growth and
mitigating economic risks. The superior performance of the LSTM model suggests that banks
should prioritize advanced predictive modeling techniques to improve decision-making.

Table 9. Strategic Implications for Financial Institutions
Area Strategic Action Implication
Liquidity Management Adoption of Predictive Models Utilize advanced models to forecast

deposit trends and manage liquidity
buffers effectively.

Interest Rate Strategy Adjust for Inflation Modify interest rates to counteract in-
flationary pressures and maintain com-
petitive deposit offerings.

Capital Planning Enhanced Stress Testing Integrate advanced models into stress
testing to ensure adequate capital levels
and prepare for economic shocks.

Effective liquidity management is critical for financial stability. The study’s findings on the rela-
tionship between money supply and deposits indicate that banks should monitor macroeconomic
indicators like M2 closely. Anticipating changes in these indicators allows banks to adjust liquidity
buffers and asset-liability management strategies, ensuring they can meet customer demands.
Inflation’s negative impact on deposits highlights the importance of managing interest rate risk in
an inflationary environment. Banks must consider how inflation affects the real value of deposits
and adjust interest rates to remain competitive and prevent outflows. Advanced predictive models,
such as LSTM and RNNs, provide banks with the tools needed to forecast inflation trends and
adjust interest rate strategies accordingly.
The effects of macroeconomic variables like GDP, inflation, and recessions on deposits underscore
the need to integrate these factors into capital planning and stress-testing frameworks. Regulatory
bodies like the Federal Reserve mandate stress testing under the Dodd-Frank Act Stress Test
(DFAST) and the Comprehensive Capital Analysis and Review (CCAR) to evaluate capital adequacy
under adverse scenarios.
Integrating advanced predictive models into stress testing can enhance accuracy and reliability,
ensuring that banks are better prepared for economic shocks. Understanding howmacroeconomic
variables influence deposits allows banks to anticipate changes and plan for potential challenges,
improving overall stability.
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This study’s findings highlight the need for updated regulatory frameworks, advanced predictive
modeling, and strategic planning within financial institutions. The superior performance of
machine learning models like LSTM underscores the importance of adopting these techniques in
financial forecasting. Regulatory bodies must ensure that institutions use validated, transparent,
and robust models, while monetary authorities should leverage these insights to balance economic
growth and price stability. Financial institutions, in turn, should align their strategies with these
findings, focusing on liquidity management, risk mitigation, and capital adequacy to navigate the
complexities of modern financial markets effectively.

10 Conclusion
This study offers a comprehensive analysis of predictive modeling techniques applied to forecast
the growth rates of bank deposits in the United States, covering the period from 1973 to 2019.
The evaluation spanned both univariate time series analysis andmultivariate analysis incorporating
macroeconomic indicators such as GDP. Through this investigation, several key insights have
emerged.
The univariate time series analysis involved five models: SARIMA, Prophet, ETS, LSTM, and
Transformer. Among these, the LSTM model demonstrated the highest predictive accuracy,
characterized by the lowest error metrics and the highest R² value, making it the most effective
model for capturing the complex temporal dependencies within the bank deposit data. In contrast,
traditional models like SARIMA and ETS showed limitations, with high error metrics and, in some
cases, negative R² values, indicating poor fit and predictive capability. The performance of the
Prophet model, while better than SARIMA and ETS, was still inferior to the LSTM, primarily due
to its difficulty in handling certain data characteristics, such as missing values or atypical seasonal
patterns.
The multivariate analysis explored the impact of incorporating macroeconomic variables, using
Recurrent Neural Networks (RNNs) with varying lagged periods. The results showed that while
increasing the lagged periods initially improved the model’s fit to the training data, it did not
consistently enhance performance on unseen data. This suggests a trade-off between model
complexity and generalization, highlighting the need for careful selection of lag parameters to
avoid overfitting.
Further econometric analysis through Fully Modified Least Squares (FMOLS) and Dynamic Least
Squares (DOLS) confirmed the significant long-term relationships between bank deposits and key
economic indicators. The positive influence of GDP and money supply (M2) on deposit levels
aligns with established economic theories, while the negative impact of inflation underscores the
sensitivity of deposit growth to price stability. The analysis also revealed that recessions have a
profound negative effect on deposit levels, emphasizing the cyclical vulnerability of the banking
sector.
The complexity of these models, which rely on deep neural networks with multiple layers and
numerous parameters, makes it difficult to interpret how specific inputs are transformed into
outputs. This lack of transparency poses challenges for financial institutions that need to justify
their model predictions to regulators, stakeholders, and decision-makers.
The issue of model interpretability is especially critical in regulatory oversight and policy formu-
lation. Regulators require transparency in the models used by financial institutions to ensure
that decisions based on these models are sound and reliable. The opaque nature of advanced
models like LSTM and Transformer can hinder this requirement, as it becomes challenging to
explain why a model made a particular prediction or to identify potential biases within the model.
Consequently, there is a trade-off between the accuracy and the interpretability of the models
used for forecasting bank deposit growth rates, which must be carefully managed by financial
institutions and regulators alike.
The dependency on historical data also raises concerns about the models’ ability to adapt to
structural changes in the economy. Economic relationships that held true in the past may evolve
or break down due to changes in regulatory frameworks, technological advancements, or shifts in
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consumer behavior. If the models are not continuously updated with new data and re-calibrated
to reflect these changes, their predictions may become outdated or inaccurate. This limitation
highlights the importance of not only relying on historical data but also incorporating mechanisms
for model updating and adaptation to ensure that predictions remain relevant and reliable in a
changing economic sector.

In the study, increasing the number of lagged periods initially improved the fit to the training
data, as evidenced by decreasing training loss. However, this improvement did not consistently
translate to better performance on the testing data, which indicated potential overfitting. As
the lagged periods increased, the models showed signs of diminishing returns, where the added
complexity did not yield corresponding gains in predictive accuracy. This trade-off between
model complexity and generalization highlights the challenges of finding the optimal configuration
for predictive models. Overly complex models risk capturing idiosyncratic patterns that do not
generalize, thus reducing their practical utility in real-world forecasting applications.
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