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Abstract 

This The proliferation of location-based services (LBS) in urban networks has raised 

concerns about user location privacy. This paper introduces a novel framework that 

synergizes federated learning with geospatial semantic analysis to address these 

concerns. Unlike traditional centralized models, our approach ensures that sensitive 

user data is processed locally on users’ devices through federated learning, 

significantly enhancing privacy. Meanwhile, geospatial semantic analysis allows for 

context-aware privacy measures, adapting protections based on the semantic 

significance of different geographic areas. We demonstrate the effectiveness of our 

method through extensive experimentation, which shows that our approach can 

significantly improve privacy protections without diminishing the utility of LBS. 

Despite the promising results, we recognize the limitations imposed by network 

dependencies and propose future research directions to enhance the resilience of 

privacy-preserving mechanisms in variable network conditions. Our work 

contributes to the development of more secure, efficient, and user-centric location-

based services, paving the way for advancements in urban network privacy. 
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I. INTRODUCTION 

In the digital age marked by the ubiquity of mobile computing, the safeguarding of 

location privacy has emerged as a paramount concern, propelled by the extensive 

aggregation and potential misappropriation of location data. The integration of 

smartphones and location-based services (LBS) into the fabric of daily life has 

undeniably enriched user experiences through the delivery of personalized, context-

aware services [1]. This technological advancement, however, is double-edged, as it 

introduces significant vulnerabilities to privacy [2], [3]. The granularity of data 

collected by LBS can unwittingly reveal intricate details about individuals’ routines, 

preferences, and behaviors, thus engendering potential invasions of privacy [4]. 

Amidst this backdrop, a spectrum of Location Privacy Protection Mechanisms 

(LPPMs) spanning spatial cloaking, the generation of dummy locations, and the 

obfuscation of location data-has been developed in an effort to mitigate these privacy 

risks [5]. Nevertheless, the quest to strike a harmonious balance between the 

imperatives of privacy protection and the maintenance of service utility remains a 

formidable challenge [6]. A notable limitation inherent to many existing LPPMs is 

their reliance on centralized data architectures, which exacerbates the susceptibility 

to data breaches and misuse by consolidating sensitive location information under 

the stewardship of singular entities. 

The scholarly pursuit to navigate the complexities of location privacy in the mobile 

computing era has yielded several insightful research trajectories and potential 

remedial strategies. [7] underscore the necessity for mechanisms within location-

based applications that empower users with the autonomy to manage their location 

information seamlessly, thereby minimizing the intrusive footprint of such systems 

[8], [9]. Concurrently, [10], [11] provide a systematic evaluation of the assorted 

paradigms and methodologies devised to fortify location privacy, accentuating the 

imperative for robust privacy constructs to bolster user confidence in LBS. In the 

realm of the Industrial Internet of Things (IIoT), [12] advocate for a differential 

privacy strategy tailored to protect the sanctity of location data, presenting a viable 

alternative to the conventional arsenal of anonymization, fuzzy logic, and 

cryptographic techniques. Furthermore, [4], [13], [14] conducts a comprehensive 

review of computational privacy mechanisms that conceptualize location data 

through a geometric lens, encompassing both privacy-preserving algorithms such as 

anonymity and obfuscation, and privacy-compromising algorithms that exploit the 

geometric attributes of data. Collectively, these studies illuminate the multifaceted 

challenge of securing location privacy against the backdrop of pervasive mobile 
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computing. As LPPMs strive to reconcile the dichotomy between privacy 

preservation and service utility, surmounting the hurdles posed by centralized data 

collection frameworks remains an enduring imperative for research and innovation 

in this domain. 

In view of these complex challenges, the paper identifies federated learning and 

geospatial semantics as the solution that will help in privacy protection. A 

decentralized paradigm for machine learning would allow federated learning to train 

models directly on users’ devices, hence the elimination of raw data transmission. 

Such an approach significantly diminishes the risk for sensitive information to be 

leaked from the company’s side, as data will not be able to escape its confines. 

Meanwhile, semantics in the geospatial domain has meant moving beyond a simple-

minded focus on reading and analysis of locative data to one that also encompasses 

a rich set of context and meaning information in and on geographical areas. The 

combination of geospatial semantics provides subtle ways of building privacy 

mechanisms for recognizing and respecting context-specific privacy requirements 

of users. This paper is ambitious along two prongs: it unfolds a new framework that 

merges federated learning with geospatial semantic analysis to enhance location 

privacy within urban networks; and hopes to evaluate this synergistic approach in 

balancing the trade-off of privacy protection against service utility. Our 

contributions are dual-ranging from the genesis of a conceptual framework to 

articulating a detailed methodology of the implementation of the proposed paradigm 

as well as its experimental evaluation explaining its superiority as compared to 

existing LPPMs. 

The remainder of the paper is organized as follows: Section 2 provides a background 

and review of related work, highlighting the limitations of current LPPMs and 

discussing the potential of federated learning and geospatial semantics. Section 3 

introduces details the methodology, including the implementation of federated 

learning and geospatial semantic analysis. Section 4 describes the system 

architecture and data flow. Section 5 discusses the findings and their implications 

for urban network privacy. Finally, Section 6 concludes the paper with a summary 

of our contributions and suggestions for future research directions. 

II. RELATED WORK 

The quest for robust location privacy mechanisms has recently seen significant 

advancements, with federated learning emerging as a pivotal technology. [8] 

introduce a pioneering privacy-preserving location recommendation framework that 
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leverages federated learning. This framework not only respects user privacy but also 

incorporates diverse factors such as transportation infrastructure, place safety, and 

flow-based spatial interactions, thereby enhancing the accuracy of location 

recommendations without compromising privacy. This study exemplifies the 

potential of federated learning in developing sophisticated, privacyconscious 

applications within urban environments. The challenges and opportunities presented 

by federated learning have been the subject of extensive research. [6] provide a 

comprehensive overview of the unique characteristics and challenges inherent in 

federated learning. Their work outlines the current methodologies and posits future 

research directions, underlining the complexity and potential of federated learning 

in addressing privacy concerns. Similarly, [7] offer a detailed survey on federated 

learning systems, categorizing system components and privacy mechanisms, and 

highlighting the vision versus the reality of federated learning in ensuring data 

privacy and protection. These studies collectively underscore the evolving landscape 

of federated learning as a foundation for privacy-preserving technologies. Further 

contributing to this domain, [11] propose a novel federated learning framework that 

incorporates differential privacy. This framework is designed to offer robust privacy 

guarantees while maintaining the theoretical convergence bounds of the learning 

models. By integrating differential privacy, this approach mitigates the risk of data 

leakage, thereby fortifying the privacy-preserving capabilities of federated learning 

systems. In a similar [3] demonstrate the application of federated learning in 

estimating Reference Signal Received Power (RSRP) values in future mobile 

networks. Their method employs geographical location information while 

implementing a differential privacy mechanism to safeguard against privacy 

breaches. This work exemplifies the utility of federated learning in enhancing 

network performance and user privacy simultaneously. 

These recent studies highlight the burgeoning interest in federated learning as a 

means to reconcile the need for personalized services with stringent privacy 

requirements. The integration of federated learning with privacy-preserving 

techniques such as differential privacy represents a promising avenue for the 

development of secure, efficient, and user-centric location-based services. As this 

body of research grows, it contributes to a deeper understanding of the challenges 

and potentials of federated learning, setting the stage for future innovations in 

privacy protection. 
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III. METHODOLOGY 

Building on the insights from the background and related work, this section outlines 

a novel conceptual framework that synergizes federated learning with geospatial 

semantic analysis to enhance location privacy. This integration not only aims to 

protect user privacy more effectively but also seeks to maintain, if not enhance, the 

utility of location-based services (LBS). 

A. FEDERATED LEARNING FOR DECENTRALIZED PRIVACY 

In this section, we elaborate on our system model and the associated problem 

statement. We consider a decentralized federated learning model where the workers 

(or nodes) are organized in a peer-to-peer (P2P) and serverless manner [2]. Each 

worker directly communicates with other workers, establishing a fully connected 

P2P network. In such a setup, each worker functions as a central node within its local 

context, eliminating the risk associated with a single central point of failure. To 

address privacy concerns within this decentralized learning process, we impose 

restrictions on data communication. Specifically, workers are prohibited from 

transmitting their local raw data. Instead, only perturbed model parameters are 

exchanged, which preserves the privacy of the underlying data. We structure the 

learning process into a series of synchronous rounds totaling T iterations. During 

each round t, a worker performs local computation and transmits its information via 

a wireless channel, modeled as a Gaussian multiple access channel (MAC). 

At round t, the information received by worker i from all other (N − 1) workers can 

be described by the input-output relationship of the Gaussian MAC: 

𝑣𝑖
(𝑡)

=∑ℎ𝑘𝑥𝑘
(𝑡)̃

𝑘≠𝑖

+𝑚𝑖
(𝑡)
, 

where x˜k
(t) ∈ Rd is the perturbed local parameter transmitted by worker k, and vi

(t) is 

the corresponding output at worker i. The channel coefficient hk = ejθk|hk| is 

complex-valued and time-invariant, representing the channel’s properties between 

the k-th and i-th workers, with θk being a constant phase shift. The term mi
(t) is an 

independent additive zero-mean unit-variance Gaussian noise vector, intrinsic to 

the communication channel at the receiving worker i’s side. Each transmission is 
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subject to a power constraint, with a maximum allowable power of Pk for worker k. 

The decentralized optimization problem we consider is defined as: 

min
𝑥∈𝑅𝑑

𝑓 (𝑥) =
1

𝑛
∑𝐸ξ∼𝐷𝑖

𝑛

𝑖=1

𝐹𝑖(𝑥; ξ), 

 

where Di is the local dataset of worker i, and Fi(x;ξ) is the loss function for worker 

i given the model parameters x and a data sample ξ. Our goal is to find an upper 

bound E 
 
 1

2 .  

  
Incorporating the convergence rate of our algorithm by analyzing differential 

privacy is crucial in our model to ensure that no private information of a single 

worker is compromised during the learning process. Even though the parameter 

exchange is based on perturbed parameters rather than raw data, the risk of 

information leakage persists. We define differential privacy in our context as 

follows: A randomized query M on a training dataset with domain D and range R 

satisfies (ϵ,δ)-differential privacy if for any two adjacent datasets d,d′ ∈ D and for 

any subset of outputs S ⊂ R, it holds that Pr(M(d) ∈ S) ≤ eϵPr(M(d′) ∈ S)+δ, where ϵ 

is the privacy budget that quantifies the privacy level of the query M, and δ is the 

probability of exceeding this privacy budget. 

B. GEOSPATIAL SEMANTIC ANALYSIS FOR CONTEXTUAL 

PRIVACY 

The integration of geospatial semantic analysis into our privacy framework forms a 

critical component for interpreting and managing location data with heightened 

contextual awareness. This approach delves into the semantic implications of 

geographical data, recognizing that different locations carry varying levels of 

privacy sensitivity. For instance, the coordinates that pinpoint a user within a 

healthcare facility inherently require more stringent privacy controls than those 

associated with a user’s presence in a public park. By employing geospatial 

semantics, our framework can dynamically tailor privacy measures to the specific 

context of each location. This is not merely a technical adjustment but a shift towards 

a more empathetic and user-centric approach to privacy. It recognizes the diverse 

nature of spaces and the privacy expectations tied to them. This nuanced 

understanding of location data allows our framework to implement a range of 
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privacy-preserving techniques, from obfuscation to selective sharing, that are 

calibrated to the semantic significance of the user’s context. The underlying premise 

is that privacy is not a static concept but a fluid one that must adapt to the ebb and 

flow of human movement across spaces with varying degrees of privacy 

implications. Ultimately, geospatial semantic analysis within our framework aims to 

provide a privacy protection mechanism that is both flexible and robust, ensuring 

users’ location data is handled with the utmost discretion and sensitivity. This 

methodology ensures that while users benefit from the conveniences of location-

based services, their privacy is not compromised but instead, is protected with a 

precision that mirrors the nuanced nature of the real world. 

C. HYBRID MODEL OPTIMIZATION 

The efficacy of the hybrid model, which fuses federated learning with geospatial 

semantic analysis, hinges on the optimization strategies employed. The model is 

designed to converge on an optimal balance between the overarching objectives of 

privacy and utility. This balance is critical in fostering user trust and ensuring the 

viability and attractiveness of location-based services (LBS). Optimization in the 

context of our hybrid model involves iterative algorithms that refine model 

parameters to minimize a loss function that accounts for both privacy preservation 

and service utility. The privacy component of the loss function ensures that the 

model parameters do not reveal individual user data, while the utility component 

ensures that the LBS remains effective and user-centric. Our optimization algorithm 

operates as follows: at each iteration, the local model parameters from each user 

device are updated to reflect new data inputs while adhering to privacy constraints 

dictated by geospatial semantics. These local updates are then aggregated using a 

secure, privacy-preserving protocol that protects against the leakage of sensitive 

information during transmission. To evaluate the convergence of the hybrid model, 

we employ a multi-objective optimization framework that allows us to monitor the 

trade-offs between privacy and utility. This framework provides a systematic 

approach to adjust the model parameters to satisfy both objectives efficiently. The 

algorithmic adjustments are guided by a set of predefined metrics that quantitatively 

measure the level of privacy protection and the accuracy or relevance of the LBS 

provided. 

• Privacy Metric: We define a privacy score that quantifies the degree to which 

the model adheres to our privacy protection standards. This metric is a 
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function of the perturbation applied to the data and the level of aggregation 

performed by the federated learning protocol. 

• Utility Metric: The utility of the LBS is measured by how accurately the 

service responds to user queries. This is evaluated using standard performance 

metrics such as precision, recall, and user satisfaction scores. 

The optimization process is a delicate balancing act: excessive emphasis on privacy 

could diminish service utility, while prioritizing utility could compromise user 

privacy. Our optimization algorithm is designed to navigate this balance, ensuring 

that both privacy and utility are maximized within the acceptable limits defined by 

the system requirements and user expectations. 

D. THEORETICAL UNDERPINNINGS 

The theoretical foundation of our framework is premised on the principle that 

privacy protection and the utility of service delivery can be concurrently optimized. 

This is achievable through the application of sophisticated data processing and 

analytical methods. At the core of our framework is federated learning, a 

decentralized model of computation that ensures sensitive data retention on the 

user’s device. This paradigm shift minimizes the susceptibility to breaches typically 

associated with centralized data stores. In tandem, geospatial semantics provide the 

framework with an enhanced capacity for discernment, allowing for the assessment 

of privacy considerations that vary across different geographical locations. Such an 

approach permits the tailoring of privacy measures to match the semantic context of 

each location, providing a bespoke privacy experience. 

E. HYPOTHESIZED IMPACT 

We postulate that the amalgamation of federated learning with geospatial semantic 

analysis will substantially bolster the protection of location privacy, all the while 

maintaining, if not enhancing, the utility of location-based services. The strategy of 

localizing data and applying contextual analysis ensures that services remain 

personalized and contextually aware, upholding privacy as an integral design 

element. We anticipate that this framework will: 

• Enhance user trust, as privacy-preserving measures are intrinsic to the service 

delivery, thus potentially broadening the adoption of LBS. 
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• Ensure that LBS are compliant with stringent privacy regulations, offering 

users assurances that their data is managed responsibly. 

• Provide a scalable solution to privacy protection, designed to evolve in 

tandem with advancements in mobile computing and the dynamic nature of 

LBS. 

This hypothesized impact reflects our belief that by addressing the dual objectives 

of privacy and utility, our framework will make significant contributions to the field 

of location privacy. It is designed not only to meet the current demands of service 

providers and users but to anticipate and adapt to future challenges and opportunities 

within the mobile computing landscape. 

IV. SYSTEM ARCHITECTURE 

The architecture of the proposed system is delineated, showcasing the interaction 

between mass users, the federated server, and the location provider within the 

purview of an urban network. The mass users, equipped with mobile devices, are the 

primary generators of location data and are the end beneficiaries of the privacy-

preserving mechanisms our framework provides. The federated server, eschewing 

traditional centralized data storage, operates on the principles of federated learning. 

It coordinates the learning process, whereby computation is executed locally on user 

devices, ensuring that sensitive location data remains within the confines of its 

origin. The location provider, integral to the functionality of locationbased services, 

processes queries from mass users. In keeping with our commitment to privacy, 

exact user locations are never directly disclosed to the location provider. Instead, an 

’anonymized edge set’ is formulated by the server utilizing our specialized 

algorithm, Indirect Multi-Objective Positioning Semantic Optimization (IMOPSO). 

This set, an obfuscated representation of user locations, takes into account the 

semantic importance and privacy sensitivities of different geographic areas, thus 

maintaining service utility while upholding stringent privacy standards. Data flow 

within this framework is characterized by a 
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FIGURE 1. The proposed privacy protection framework illustrating the data flow 

between mass users, the federated server, and the location provider. 

bidirectional exchange between the mass users and the federated server and a 

unidirectional flow from the server to the location provider. The latter receives the 

anonymized data, processes the service requests, and returns the relevant 

information back to the users through the federated server, which acts as a privacy-

preserving filter. 

A. PROPOSED PRIVACY PROTECTION FRAMEWORK 

Our Enhanced Privacy Protection Framework (EPPF) presents a sophisticated 

architecture for the protection of user location data. The framework comprises three 

principal entities: mass users, the server, and the location provider, as illustrated in 

Fig. 1.. The server’s operation is grounded in federated learning principles, 

orchestrating a distributed, serverless learning process that sidesteps the pitfalls of 

centralized data storage and processing, thereby fortifying privacy defenses. The 

mass users interface with the location provider via locationbased queries, with the 

EPPF ensuring that the confidentiality of their location is maintained. Privacy is 

preserved through the innovative creation of an anonymized edge set by the server, 

which uses our proprietary IMOPSO algorithm. This set effectively masks the true 

location data of users while permitting the continued utility of location services. 

This framework is undergirded by a geospatial semantic structure, wherein each 

geographic location is imbued with a semantic weight reflecting its privacy 
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sensitivity. Users exercise control over their privacy settings, influencing the degree 

of anonymization applied to their data. The system pre-assigns a popularity value to 

locations based on inherent privacy risks, with more sensitive areas such as hospitals 

receiving higher values in comparison to less sensitive locations like parks. Our 

approach to privacy protection is both dynamic and context-aware, responding to 

the semantic nuances of different locations to provide a tailored privacy experience. 

This dynamicity ensures that as users navigate through spaces with varying privacy 

implications, the framework adapts, offering protection that is as fluid and varied as 

the urban landscape itself. 

V. RESULTS AND DISCUSSION 

In this section, we present a detailed analysis of the outcomes derived from the 

application of our hybrid model, with particular focus on its capacity to fortify 

location privacy while concurrently preserving the utility of services within urban 

networks. Our investigation has yielded pivotal insights, affirming the initial 

hypotheses and underscoring the broader ramifications for privacy within urban 

network infrastructures. As depicted in Fig. 2., we observe 

 

FIGURE 2. The scope of the final anonymous edge set and its impact on the balance 

between privacy and utility. The Proposed Method showcases a marked advantage 

in reconciling these two objectives compared to DLG and BL k-disturbance. 
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that the growth pattern of the sum of edge distance (sum1e) for the three algorithms 

under consideration exhibits a nonlinear relationship with the increment of k values. 

Notably, the edge distance differential of our Proposed Method surpasses that of both 

the Dummy Location Generation (DLG) and BL k-disturbance algorithms by a 

factor of two. This disparity is attributable to the Proposed Method’s approach of 

evaluating sum1e across a multitude of candidate anonymous edge sets, thereby 

enhancing the precision of the assessment. A salient observation is that the DLG’s 

scope of sum1e is markedly more extensive than that of the other algorithms, a 

consequence of its non-consideration of privacy ratings for sensitive location 

semantics. Conversely, the BL k-disturbance’s privacy rating system, with its 

rudimentary three-tier structure, results in a coarsely granulated LBS, rendering the 

semantic relationships among anonymous edges more susceptible to inference by 

malicious entities. The Proposed Method, by leveraging a non-discrete distribution 

of anonymous edges within the final set, adeptly maintains utility without sacrificing 

privacy. Fig. 3. further elucidates that with the expansion of the final anonymous 

edge set, the Proposed Method significantly outperforms the other two algorithms 

predicated on k-anonymity in terms of achieving a harmonious equilibrium between 

privacy and utility. These comparative analyses unequivocally demonstrate that the 

Proposed Method is more attuned to fulfilling user privacy exigencies within a 

realistic urban network context. 
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FIGURE 3. Nonlinear growth trend of the sum of edge distance (sum1e) with 

increasing k values for the three algorithms. The Proposed Method exhibits a 

significant improvement over DLG and BL k-disturbance. 

VI. CONCLUSION 

This work has contributed to the growing body of knowledge in privacy-preserving 

techniques by proposing a hybrid framework that integrates federated learning with 

geospatial semantic analysis. Our approach aims to enhance the privacy of location 

data within urban networks without compromising the functional utility of location-

based services. Through rigorous experimental validation, our method has not only 

shown promise in theoretical modeling but also practical efficacy in real-world 

scenarios. Our proposed framework has exhibited its potential in maintaining a 

delicate balance between personalized service delivery and stringent privacy 

demands. It showcases an innovative means to leverage the localized intelligence of 

federated learning and the context-aware sensitivity of geospatial semantics, 

offering a nuanced approach to privacy protection. The presented framework marks 

a significant step towards achieving a privacy-utility equilibrium in location-based 

services. As urban networks continue to evolve and integrate more deeply with 

technology, the importance of privacy-preserving solutions will only become more 

pronounced. We believe that our work lays a solid foundation for future endeavors 

in this domain and will inspire further innovation and exploration. 

A. LIMITATION 

Despite the strengths of our approach, the limitation that could influence its practical 

deployment. The dependency on continuous and reliable network connectivity for 

federated learning may not be guaranteed in all urban environments. Variabilities in 

network infrastructure and interruptions in connectivity could lead to inconsistent 

model performance and may affect the real-time applicability of the privacy 

protections offered. 

B. FUTURE RESEARCH DIRECTIONS 

In light of this limitation, future research should explore the resilience of federated 

learning models under fluctuating network conditions. Investigating models capable 

of operating with intermittent connectivity or employing local caching strategies 

could prove beneficial. Additionally, further research could delve into the 

development of hybrid models that integrate edge computing to distribute the 
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computational load and enhance system robustness. Another promising research 

trajectory is to augment the privacy safeguards of federated learning against 

sophisticated inference attacks. The application of advanced cryptographic 

techniques, such as differential privacy, homomorphic encryption, or secure 

multiparty computation, could provide stronger guarantees and a more robust 

defense mechanism against potential privacy breaches. Moreover, expanding the 

applicability of the framework to encompass the Internet of Things (IoT) and other 

pervasive computing environments presents an exciting challenge. The diverse and 

voluminous nature of IoT data necessitates scalable and adaptable privacy-

preserving solutions that this framework could potentially offer. 
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