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Abstract 

This paper explores the integration of machine learning, specifically recurrent neural 

networks (RNNs), for automated anomaly detection within NoSQL databases. It 

addresses the challenges of maintaining data accuracy and security in these flexible 

and dynamic systems, where traditional methods often fall short. The proposed 

model features a distributed time series database, edge computing agents, a central 

data management backbone, and an RNN tailored for anomaly detection. Historical 

data is incorporated for context, and MQTT protocol ensures efficient 

communication. The model is evaluated using real-world data, demonstrating its 

potential to detect anomalies effectively. Furthermore, the paper investigates the 

impact of replication degree (k) on the performance and scalability of VoltDB, a 

NewSQL database, using the TPC-C benchmark. Results reveal that increasing k can 

enhance fault tolerance without significantly sacrificing throughput or latency. This 

work contributes to the understanding of anomaly detection in NoSQL databases and 

the trade-offs between consistency and performance in distributed database systems. 

Keywords: Anomaly Detection, Database Security, Machine Learning, NoSQL 

Databases, Recurrent Neural Networks (RNNs) 

 

I INTRODUCTION 

The use of NoSQL databases has become increasingly popular in recent years due 

to their ability to handle large amounts of unstructured data [1]. One of the key 

benefits of NoSQL databases is their flexibility in terms of data schema, which 
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allows them to handle data that does not fit neatly into a traditional relational 

database [2]. This makes them particularly useful for storing data that is semi-

structured or has a variable schema, such as data from social media, IoT devices, or 

customer feedback [3], [4]. However, the use of NoSQL databases also presents 

some challenges, particularly in terms of data consistency and accuracy. Because 

NoSQL databases do not have the strict data typing and validation rules of traditional 

relational databases, it can be more difficult to ensure that data is accurate and 

consistent. This can have serious consequences for businesses that rely on this data 

to make decisions. 

MongoDB, a prominent NoSQL database provider, experiences security incidents 

that highlights the potential risks associated with the use of NoSQL databases [5]. 

The breach was detected when an unauthorized third party used a phishing attack to 

gain access to some of MongoDB’s corporate applications used for customer support 

services. The compromised system contained customer account metadata and 

contact information, including fields such as names, phone numbers, email 

addresses, and system logs for one customer. MongoDB has removed the 

unauthorized third party from their corporate applications, and the incident is 

considered contained. This is one of many incidents are happening around the world. 

Database anomaly detection has become a crucial factor because of this both for the 

service providers as well as the clients. The scale of these database system and many 

more factors are making it increasingly hard to maintain a robust security and real 

time anomaly detection quickly. 

This incident highlights the need for improved anomaly detection techniques in 

NoSQL databases. As databases continue to scale to massive sizes and handle more 

diverse data types, maintaining data accuracy and security becomes increasingly 

challenging through manual processes alone. Traditional rule-based and statistical 

anomaly detection methods may struggle to keep pace with the flexibility and 

complexity of modern NoSQL systems [6]. Machine learning offers a promising 

approach by leveraging patterns in vast amounts of historical and real-time data. 

Techniques like supervised learning can identify anomalies based on features 

extracted from both schema-based and schema-less data [7]. Unsupervised methods 

like clustering and isolation forests can detect outliers without labeled examples. In 

this paper, we evaluate the application of machine learning for automated anomaly 

detection directly in NoSQL databases. Our goal is to develop solutions that can 

operate with minimal configuration and continue learning from new data with 
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minimal human oversight. This could empower database administrators and security 

teams to more rapidly detect and address a wider range of threats, including 

previously unknown attack patterns. It may also reduce costs by shifting resource-

intensive monitoring tasks from people to automated systems. 

The existing literature on anomaly detection in NoSQL databases has primarily 

focused on traditional rule-based and statistical methods [8-11]. While these 

approaches provide valuable insights, they may struggle to keep pace with the 

dynamic and diverse nature of data stored in modern NoSQL systems. Additionally, 

there is a limited exploration of the integration of machine learning, particularly 

recurrent neural networks (RNNs), directly within NoSQL databases for automated 

anomaly detection. Moreover, the evaluation of database performance and 

scalability, especially in the context of varying replication degrees ((k)), is essential 

for understanding the trade-offs between consistency and performance. The current 

research landscape lacks a comprehensive study that combines machine learning-

based anomaly detection with an in-depth analysis of distributed database 

performance under different replication scenarios. 

This work proposes a novel approach by integrating machine learning, specifically 

recurrent neural networks (RNNs), directly within NoSQL databases for automated 

anomaly detection. The model is designed to adapt to the flexible and dynamic 

nature of data stored in NoSQL systems, providing a more robust and scalable 

solution compared to traditional methods. 

II RELATED WORKS 

Various approaches have been explored to enhance data availability and address 

performance anomalies. Bayou [12] relies on replication for data availability but 

lacks mechanisms for handling performance anomalies. Emerging cloud databases 

like VoltDB and MongoDB [13], [14] leverage enhanced main memory data 

structures for high data availability, but face challenges from cloud performance 

anomalies, including network, disk, and main memory malfunctions. Cake [15] 

focuses on scheduling for data availability but doesn’t identify faulty VMs. Eriksson 

et al. [16] offer a routing framework to tackle network failures, and Tejo’s anomaly 

detection alerts complement their work. In the domain of statistical learning for 

anomaly detection, Gujrati et al. [10] present various prediction models and anomaly 

detection approaches, each with its strengths and limitations. This research 

collectively contributes to the understanding of distributed database resilience and 
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the challenges associated with performance anomalies in cloud environments. In this 

work, the authors extended a previous supervised learning model to detect multiple 

classes of anomalies based on SLO metrics. The results with Tejo demonstrate that 

the choice of the learning algorithm and features contributes to enhancing predictive 

efficiency in detecting performance anomalies. The research addresses the need for 

effective anomaly detection in distributed databases, especially in the context of 

cloud environments, where performance anomalies can significantly impact 

database performance. 

III NOSQL DATABASE AND ANOMALY DETECTION 

A NoSQL over traditional SQL 
NoSQL databases are a type of non-relational database that offers a more flexible 

and scalable way of storing and retrieving data, particularly for handling large 

amounts of unstructured or semi-structured data [17]. Unlike traditional relational 

databases, NoSQL databases do not use a table-based relational model, and instead, 

they are designed to handle the specific requirements of modern applications that 

require high availability and scalability. NoSQL databases can be broadly classified 

into several categories based on their data model, including key-value, document-

oriented, graph, and column-family databases. Each of these models has its own 

strengths and weaknesses, and the choice of which one to use depends on the specific 

requirements of the application. 

Key-value databases, for example, are designed to store and retrieve data based on 

a unique key value. They are simple and efficient but may not be suitable for 

complex queries. Document-oriented databases, on the other hand, store data in the 

form of documents, such as JSON or XML, which can be more flexible than key-

value databases. Graph databases are designed to store and query data in the form of 

nodes and edges, which makes them ideal for applications that involve complex 

relationships between data. Column-family databases are similar to relational 

databases but offer more flexibility in terms of data schema. NoSQL databases are 

horizontally scalable, meaning that they can handle increasing amounts of data and 

user traffic by adding more machines to the cluster, rather than relying on a single, 

powerful machine. This makes them well-suited for applications that require high 

availability and scalability, such as social media, online shopping, and real-time 

analytics. In addition, NoSQL databases are designed to handle large volumes of 

data and can be optimized for distributed processing, which allows them to handle 
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massive volumes of data more efficiently. This makes them particularly useful for 

processing computer network traffic, where they can handle large volumes of data 

and provide efficient querying and analysis of network activity. Overall, NoSQL 

databases offer a powerful solution for handling large amounts of data and provide 

a more flexible and scalable way of storing and retrieving data than traditional 

relational databases. Their ability to handle unstructured or semi-structured data, 

scale horizontally, and provide efficient distributed processing make them an 

attractive option for modern applications that require high availability and 

scalability. The graphical representa- 

 

Fig. 1 Relationship between user, services and sessions in a live database 

tion in Fig. 1 depicts the relationships among users, services, and sessions in 

databases. The users/devices are represented by red crosses, and each user/device is 

connected to multiple sessions and services, indicating that a single user can access 

multiple services and have multiple sessions. The services are represented by blue 

circles and are highly connected to both users/devices and sessions, showing that 

services can be accessed by many users and can have many concurrent sessions. The 

sessions are represented by yellow circles and have connections with both 
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users/devices and services, demonstrating that each session is associated with a 

specific user/device accessing a particular service. The diagram illustrates a complex 

network of interactions between users/devices, services, and sessions in databases, 

highlighting the flexibility and complexity of user interactions with database driven 

applications/services. when a user uses a particular service that creats a session, or 

more than one service. Eventually, a users session starts as soon as they login or 

access the database. A depiction of the breakdown of primary units in a database, 

specifically focusing 

 

 

Fig. 2 Breakdown of primary units in a Database 
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on the connections between users/devices, services, and sessions are given in Fig. 2. 

Single User Block In this context, when a user utilizes a service it initiates a session. 

However, its also possible for sessions to be registered without immediately using 

any specific service as indicated by your statement. This could mean that in some 

systems or applications, initiating or opening the application might automatically 

start a session which then awaits for specific service requests or interactions from 

the user. Single Sessions are typically registered by services as shown in Fig. 2b. 

They act as intermediaries allowing communication between users/devices and 

services ensuring data consistency and security among other roles. Each session can 

be unique to ensure personalized experiences or data isolation depending on system 

requirements. Single Service - Fig. 2c illustrates that single service can have multiple 

communication channels with various users/devices leading to registration of 

different sessions. This highlights scalability where one service handles requests 

from multiple sources efficiently ensuring availability and performance. 

B Anomaly detection in NoSQL 
Detecting anomalies, those deviations from the expected within a dataset, forms a 

crucial line of defense for securing and understanding our data. In the diverse 

landscape of NoSQL databases, identifying these anomalies presents unique 

challenges due to the inherent flexibility and lack of rigid structure. Here, we focus 

into three key categories of anomalies, exploring their specific characteristics and 

how they manifest in NoSQL environments. 

a Point Anomalies 
Imagine a lone data point standing out starkly against the backdrop of its peers. This 

is the essence of a point anomaly, a single datum that significantly deviates from the 

established norm. In NoSQL databases, where diverse data formats intermingle, 

identifying such outliers can be tricky. A user login attempt from an unusual location, 

a sensor reading exceeding known thresholds, or a sudden spike in a specific data 

field âAS¸ these are potential˘ red flags demanding investigation. Statistical methods 

like outlier detection and z-scores serve as sentinels, constantly vigilant for these 

lone sentinels of the unexpected. 

b Contextual Anomalies 
While point anomalies jump out individually, contextual anomalies whisper their 

secrets through subtle shifts in the relationships and behaviors within the data. 

Consider an office building exhibiting high power consumption during the night 
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âAS¸ a stark deviation from˘ expected patterns based on context. Similarly, unusual 

website traffic patterns or correlations between seemingly unrelated data points 

within NoSQL databases can signal anomalies hidden within the intricate dance of 

data. Techniques like time series analysis and clustering algorithms become crucial 

interpreters, deciphering these subtle deviations from established patterns to unveil 

hidden anomalies. 

c Collective Anomalies 
Not all anomalies stand alone. Collective anomalies emerge as groups of interrelated 

data points, collectively deviating from normal behavior. Imagine a coordinated 

cyberattack, where multiple sensors report abnormal readings simultaneously. Or, in 

NoSQL databases, a surge of unsuccessful login attempts followed by a successful 

one âAS¸ a pattern hinting˘ at brute-force attacks. Statistical analysis, correlation 

analysis, and network traffic analysis become instrumental in identifying these 

groups of interrelated anomalies, revealing the power of the pack in orchestrating 

malicious activities. 

 

Fig. 3 Proposed model 
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IV PROPOSED RNN BASED MODEL 

The presented figure Fig. 3 outlines a comprehensive model designed for the 

monitoring and analysis of data, with a focal point on the integration of a Recurrent 

Neural Network (RNN). 

The visual representation unfolds as follows: 

A Monitoring Database and Real-Time Processing 
Connected to this database is a monitoring system, depicted by grey servers. This 

interconnection signifies the seamless flow of data from the database to the 

monitoring system. The monitoring system, in turn, is responsible for the real-time 

collection and processing of the incoming data. Our focus lies in real-time 

monitoring of power consumption, performance metrics, and utilization of 

computing nodes. The proposed model draws inspiration from established practices 

in distributed systems, incorporating key components and concepts that optimize 

data collection and analysis. 

a Distributed Time Series Database 
Our model relies on a distributed time series database, strategically built on Apache 

Cassandra, a renowned NoSQL database recognized for its scalability and high 

availability. This database architecture is meticulously designed to efficiently store 

and manage time-stamped data points, making it particularly applicable to scenarios 

demanding the handling of large volumes of time-series data. This component serves 

as the cornerstone for our dataset monitoring system. 

b Edge Computing with Embedded Measuring Boards 
To facilitate real-time monitoring at the source of data generation, our framework 

embraces edge computing principles. Agents are deployed on edge computing 

nodes, each equipped with embedded measuring boards. These agents are designed 

to monitor a spectrum of parameters, including power consumption, performance 

metrics, and utilization. This approach proves invaluable in scenarios where 

centralizing all monitoring processes is impractical or resource-intensive. 

c Monitoring Agents and Hardware Sensors 
Agents running on computing nodes play a pivotal role in our proposed model. They 

are entrusted with the responsibility of monitoring key metrics, employing a 

combination of software commands and hardware sensors. This comprehensive 
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approach ensures accurate measurements and provides deep insights into the 

behavior of computing nodes. The detailed monitoring of hardware-related metrics 

is particularly critical for performance optimization and anomaly detection within 

the dataset. 

d Data Management Backbone and MQTT Protocol 
Measured values obtained from monitoring agents are seamlessly transmitted to a 

central data management backbone. This communication is facilitated by the MQTT 

(MQ Telemetry Transport) protocol, chosen for its suitability in low bandwidth, high 

latency networks with minimal resource demands. The MQTT protocol emerges as 

a crucial element in our architecture, ensuring efficient and reliable communication 

between distributed components. This aligns seamlessly with applications where 

real-time data transfer with minimal network resources is of paramount importance. 

B Comparison with Historical Data 
The monitored data, having undergone real-time processing, is subsequently 

directed towards historical data repositories, represented by yellow folders. This step 

involves a comparison between the current dataset and historical data to discern 

patterns or anomalies. The integration of historical data enriches the analysis, 

providing context for identifying deviations from established patterns. The 

monitored data, continuously collected in real-time, undergoes processing to extract 

relevant information and insights. This processing step can involve various 

algorithms, statistical techniques, or machine learning models depending on the 

nature of the data and the analysis goals. The processed real-time data is then 

compared with historical data repositories. This comparison aims to discern patterns 

or anomalies in the data. The integration of historical data enriches the analysis by 

providing context for identifying deviations from established patterns, helping in the 

detection of anomalies. Anomalies may manifest as unexpected spikes, drops, or 

shifts in the data compared to historical norms. 

C RNN Model 
In our study, we employed recurrent neural networks (RNNs) for each virtual 

machine within the infrastructure, as detailed in Section 4.3. This choice was 

motivated by the finding that dedicated models tailored for specific nodes 

outperformed a generic, universally applied model. The training data for each RNN 

was sourced from node-related information collected by our monitoring 
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infrastructure. During the training phase, only data corresponding to the normal state 

was utilized. The dataset comprises a diverse range of metrics, including core load, 

frequency, temperature, virtual machine power consumption, room temperature, 

GPU usage, and more. These metrics, also referred to as features, constituted the 

input set for the RNNs. Each virtual machine had a dedicated training set 

corresponding to two months of normal behavior, obtained in collaboration with 

system administrators. Due to storage constraints, fine-grained monitoring data was 

retained for no more than a week. Therefore, for training purposes, we employed 

coarse-grained data, aggregated in five-minute intervals. Following the collection of 

raw data, a preprocessing step was implemented, which involved tasks such as 

removing data corresponding to periods when the monitoring system malfunctioned 

and normalization. This preparatory phase took approximately 30 seconds per virtual 

machine. The final set of features amounted to 166. A consistent network topology 

was adopted for each virtual machine, employing an RNN model for sequence-based 

learning. We chose this approach after empirical evaluation, considering its 

suitability for capturing temporal dependencies within the data. The network 

comprised three layers: an input layer, an output layer, and a hidden layer with 

recurrent connections. We used Rectified Linear Units (ReLU) as the activation 

function for neurons. 

The input and output layers contained as many neurons as the number of features 

(166), while the hidden layer was appropriately sized to capture temporal patterns. 

Each RNN was trained with data specific to its corresponding virtual machine, 

utilizing available computational resources. The training employed the Adam 

algorithm, with the mean absolute error as the target loss. After preliminary 

experiments, a batch size of 32 and 100 epochs were chosen. The training duration 

for each RNN was approximately 20 seconds. It is noteworthy that training times 

and overhead were not considered critical concerns, given that the training phase 

occurred infrequently (once every few months) and could be scheduled during 

maintenance periods. The Keras framework with TensorFlow as a backend 

facilitated the design and training of the RNNs. 

V RESULT ANALYSIS 

We present a detailed analysis of our comprehensive evaluation of VoltDB (v4.x) as 

a NewSQL database, with a specific focus on investigating the impact of varying the 

replication degree (k). Our evaluation centered around the widely recognized TPC-
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C benchmark, tailored for assessing Online Transaction Processing (OLTP) 

workloads. Some of the key indexes te evaluate the study is given in Table 1. 

A Anomaly detection key indexes 

The Table 1, a list of key indexes for anomaly detection in network behavior and 

memory and storage metrics. These indexes are important for identifying unusual 

patterns in network traffic and system resource usage that may indicate malicious 

activity or other types of anomalies. The table is organized into two categories: 

network behavior and memory and storage. Within each category, the table lists 

specific metrics that are commonly used to detect anomalies, along with a brief 

description of each metric. By monitoring these metrics and identifying deviations 

from expected behavior, security teams can quickly identify and respond to potential 

security threats. 

Table 1 Network Behavior and Memory and Storage Metrics 

Network Behavior Memory and Storage 

TCP Syn Recv IO Writes 

Category: Connection Establishment Category: Data Storage 

TCP MD5 Unexpected Memory Mapped 

Category: Security Category: Memory Management 

TCP SACK (Selective Acknowledgment) Memory Free 

Category: Network Acknowledgment Category: Memory Management 

TCP SACK Shifted 

Category: Network Acknowledgment 

 

TCP Resets 

Category: Connection Termination 

 

TCP Connection Active 

Category: Connection State 
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TCP PAWS (Protect Against Wrapped 

Sequence numbers) 

Category: Network Security 

 

This section provides a thorough examination of the results obtained from our 

experiments, shedding light on VoltDB’s performance and scalability in different 

replication scenarios [14], [18]. 

B Impact of Replication Degree (k) 
To assess the performance and scalability of VoltDB, we systematically varied the 

replication degree (k) across our experiments. The replication degree is a crucial 

parameter that influences the fault tolerance and consistency of distributed 

databases. 

a Throughput 
The throughput of the system was measured under different replication degrees. 

Figure 4 illustrates the impact of k on the overall throughput. The result shows the 

impact of repli- 

 

Fig. 4 Impact of Replication Degree (k) on Throughput 

cation degree (k) on the throughput of VoltDB, a distributed database system that 

supports high-performance transactions. The result is based on an experiment where 
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the replication degree was varied from 1 to 3, and the throughput was measured in 

transactions per second. The result indicates that increasing the replication degree 

reduces the throughput of VoltDB, but not significantly. This is because higher 

replication degree provides stronger consistency and fault tolerance, but also 

introduces more overhead for writing and propagating data to multiple replicas. The 

result also shows that the throughput reduction is more noticeable when k is doubled 

from 1 to 2, than when it is increased from 2 to 3. This suggests that the marginal 

impact of replication degree diminishes with higher k. The result also demonstrates 

that VoltDB can achieve very high throughput even with high replication degree. For 

example, at k=3, VoltDB can handle over 100K transactions per second, which is 

impressive for a distributed database system. This implies that VoltDB can balance 

performance and reliability effectively, and can support applications that require 

both high speed and high availability. 

b Latency 

Latency is a critical metric in OLTP systems. Table 2 provides insights into the effect 

of k on transaction latency. Latency varied across nodes, with Node33 exhibiting a 

higher 97th percentile (0.95) but lower 99th percentile (0.93), suggesting potential 

spikes in response times. Fig. 5 illustrates the impact of replication degree (k) on 

transaction latency, generally showing a trend of latency reduction with higher k, 

aligning with expectations of improved fault tolerance and consistency. However, 

the trade-off between consistency and performance is evident, as higher replication 

may impact latency, but not uniformly across nodes. The Table 2 Percentile Results 

for Different Nodes 

Node 97th Percentile 99th Percentile 

node10 0.88 0.91 

node12 0.90 0.92 

node27 0.91 0.95 

node33 0.95 0.93 

node40 0.90 0.89 

node41 0.87 0.83 
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choice of replication degree should therefore carefully consider application needs, 

potentially tailoring k configurations for different nodes to balance performance and 

consistency requirements. 

 

Fig. 5 Impact of Replication Degree (k) on Latency 

VI CONCLUSION 

The increasing prevalence of NoSQL databases, while offering unparalleled 

flexibility for handling diverse and unstructured data, also presents challenges in 

terms of data consistency and security. The security incident at MongoDB 

underscores the importance of robust anomaly detection techniques for maintaining 

data accuracy and safeguarding against potential threats. In this paper, we explored 

the application of machine learning, particularly recurrent neural networks (RNNs), 

for automated anomaly detection directly within NoSQL databases. Our proposed 

model, incorporating distributed time series databases, edge computing, and 

historical data comparison, leverages the strengths of NoSQL databases while 

addressing the evolving landscape of security threats. The RNNbased approach, 

tailored for specific virtual machines, demonstrated superior performance in 

capturing temporal dependencies within the data. The evaluation of VoltDB’s 

performance and scalability, focusing on the impact of replication degree (k), 

revealed insightful results. The trade-off between consistency and performance was 
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evident, with higher replication degrees influencing throughput and latency. 

However, even at high replication degrees, VoltDB demonstrated impressive 

throughput, balancing performance and reliability effectively. 

While our study has made improvement in the integration of machine learning for 

anomaly detection in NoSQL databases and understanding the performance nuances 

of distributed databases like VoltDB, several avenues for future exploration and 

improvement exist. Future research should explore deeper into refining anomaly 

detection models, exploring advanced techniques beyond recurrent neural networks 

(RNNs). Investigating the applicability of deep learning architectures, ensemble 

methods, or hybrid models could contribute to more robust and accurate anomaly 

detection systems. Additionally, research efforts should focus on adapting models to 

dynamic changes in data schema, a common feature in NoSQL databases. Exploring 

dynamic replication strategies in distributed databases is a promising avenue. 

Adaptive replication mechanisms that adjust the replication degree (k) based on 

workload characteristics, system performance, and anomaly detection results could 

optimize both consistency and performance. This dynamic approach can offer an 

intelligent trade-off, providing higher replication during critical periods and scaling 

down during periods of lower demand. 
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