

International Journal of Information and Cybersecurity

40 | P a g e

Enhancing Database Security: A Machine Learning

Approach to Anomaly Detection in NoSQL Systems

Jatin Pal Singh

Abstract

This paper explores the integration of machine learning, specifically recurrent neural

networks (RNNs), for automated anomaly detection within NoSQL databases. It

addresses the challenges of maintaining data accuracy and security in these flexible

and dynamic systems, where traditional methods often fall short. The proposed

model features a distributed time series database, edge computing agents, a central

data management backbone, and an RNN tailored for anomaly detection. Historical

data is incorporated for context, and MQTT protocol ensures efficient

communication. The model is evaluated using real-world data, demonstrating its

potential to detect anomalies effectively. Furthermore, the paper investigates the

impact of replication degree (k) on the performance and scalability of VoltDB, a

NewSQL database, using the TPC-C benchmark. Results reveal that increasing k can

enhance fault tolerance without significantly sacrificing throughput or latency. This

work contributes to the understanding of anomaly detection in NoSQL databases and

the trade-offs between consistency and performance in distributed database systems.

Keywords: Anomaly Detection, Database Security, Machine Learning, NoSQL

Databases, Recurrent Neural Networks (RNNs)

I INTRODUCTION

The use of NoSQL databases has become increasingly popular in recent years due

to their ability to handle large amounts of unstructured data [1]. One of the key

benefits of NoSQL databases is their flexibility in terms of data schema, which

International Journal of Information and Cybersecurity

41 | P a g e

allows them to handle data that does not fit neatly into a traditional relational

database [2]. This makes them particularly useful for storing data that is semi-

structured or has a variable schema, such as data from social media, IoT devices, or

customer feedback [3], [4]. However, the use of NoSQL databases also presents

some challenges, particularly in terms of data consistency and accuracy. Because

NoSQL databases do not have the strict data typing and validation rules of traditional

relational databases, it can be more difficult to ensure that data is accurate and

consistent. This can have serious consequences for businesses that rely on this data

to make decisions.

MongoDB, a prominent NoSQL database provider, experiences security incidents

that highlights the potential risks associated with the use of NoSQL databases [5].

The breach was detected when an unauthorized third party used a phishing attack to

gain access to some of MongoDB’s corporate applications used for customer support

services. The compromised system contained customer account metadata and

contact information, including fields such as names, phone numbers, email

addresses, and system logs for one customer. MongoDB has removed the

unauthorized third party from their corporate applications, and the incident is

considered contained. This is one of many incidents are happening around the world.

Database anomaly detection has become a crucial factor because of this both for the

service providers as well as the clients. The scale of these database system and many

more factors are making it increasingly hard to maintain a robust security and real

time anomaly detection quickly.

This incident highlights the need for improved anomaly detection techniques in

NoSQL databases. As databases continue to scale to massive sizes and handle more

diverse data types, maintaining data accuracy and security becomes increasingly

challenging through manual processes alone. Traditional rule-based and statistical

anomaly detection methods may struggle to keep pace with the flexibility and

complexity of modern NoSQL systems [6]. Machine learning offers a promising

approach by leveraging patterns in vast amounts of historical and real-time data.

Techniques like supervised learning can identify anomalies based on features

extracted from both schema-based and schema-less data [7]. Unsupervised methods

like clustering and isolation forests can detect outliers without labeled examples. In

this paper, we evaluate the application of machine learning for automated anomaly

detection directly in NoSQL databases. Our goal is to develop solutions that can

operate with minimal configuration and continue learning from new data with

International Journal of Information and Cybersecurity

42 | P a g e

minimal human oversight. This could empower database administrators and security

teams to more rapidly detect and address a wider range of threats, including

previously unknown attack patterns. It may also reduce costs by shifting resource-

intensive monitoring tasks from people to automated systems.

The existing literature on anomaly detection in NoSQL databases has primarily

focused on traditional rule-based and statistical methods [8-11]. While these

approaches provide valuable insights, they may struggle to keep pace with the

dynamic and diverse nature of data stored in modern NoSQL systems. Additionally,

there is a limited exploration of the integration of machine learning, particularly

recurrent neural networks (RNNs), directly within NoSQL databases for automated

anomaly detection. Moreover, the evaluation of database performance and

scalability, especially in the context of varying replication degrees ((k)), is essential

for understanding the trade-offs between consistency and performance. The current

research landscape lacks a comprehensive study that combines machine learning-

based anomaly detection with an in-depth analysis of distributed database

performance under different replication scenarios.

This work proposes a novel approach by integrating machine learning, specifically

recurrent neural networks (RNNs), directly within NoSQL databases for automated

anomaly detection. The model is designed to adapt to the flexible and dynamic

nature of data stored in NoSQL systems, providing a more robust and scalable

solution compared to traditional methods.

II RELATED WORKS

Various approaches have been explored to enhance data availability and address

performance anomalies. Bayou [12] relies on replication for data availability but

lacks mechanisms for handling performance anomalies. Emerging cloud databases

like VoltDB and MongoDB [13], [14] leverage enhanced main memory data

structures for high data availability, but face challenges from cloud performance

anomalies, including network, disk, and main memory malfunctions. Cake [15]

focuses on scheduling for data availability but doesn’t identify faulty VMs. Eriksson

et al. [16] offer a routing framework to tackle network failures, and Tejo’s anomaly

detection alerts complement their work. In the domain of statistical learning for

anomaly detection, Gujrati et al. [10] present various prediction models and anomaly

detection approaches, each with its strengths and limitations. This research

collectively contributes to the understanding of distributed database resilience and

International Journal of Information and Cybersecurity

43 | P a g e

the challenges associated with performance anomalies in cloud environments. In this

work, the authors extended a previous supervised learning model to detect multiple

classes of anomalies based on SLO metrics. The results with Tejo demonstrate that

the choice of the learning algorithm and features contributes to enhancing predictive

efficiency in detecting performance anomalies. The research addresses the need for

effective anomaly detection in distributed databases, especially in the context of

cloud environments, where performance anomalies can significantly impact

database performance.

III NOSQL DATABASE AND ANOMALY DETECTION

A NoSQL over traditional SQL
NoSQL databases are a type of non-relational database that offers a more flexible

and scalable way of storing and retrieving data, particularly for handling large

amounts of unstructured or semi-structured data [17]. Unlike traditional relational

databases, NoSQL databases do not use a table-based relational model, and instead,

they are designed to handle the specific requirements of modern applications that

require high availability and scalability. NoSQL databases can be broadly classified

into several categories based on their data model, including key-value, document-

oriented, graph, and column-family databases. Each of these models has its own

strengths and weaknesses, and the choice of which one to use depends on the specific

requirements of the application.

Key-value databases, for example, are designed to store and retrieve data based on

a unique key value. They are simple and efficient but may not be suitable for

complex queries. Document-oriented databases, on the other hand, store data in the

form of documents, such as JSON or XML, which can be more flexible than key-

value databases. Graph databases are designed to store and query data in the form of

nodes and edges, which makes them ideal for applications that involve complex

relationships between data. Column-family databases are similar to relational

databases but offer more flexibility in terms of data schema. NoSQL databases are

horizontally scalable, meaning that they can handle increasing amounts of data and

user traffic by adding more machines to the cluster, rather than relying on a single,

powerful machine. This makes them well-suited for applications that require high

availability and scalability, such as social media, online shopping, and real-time

analytics. In addition, NoSQL databases are designed to handle large volumes of

data and can be optimized for distributed processing, which allows them to handle

International Journal of Information and Cybersecurity

44 | P a g e

massive volumes of data more efficiently. This makes them particularly useful for

processing computer network traffic, where they can handle large volumes of data

and provide efficient querying and analysis of network activity. Overall, NoSQL

databases offer a powerful solution for handling large amounts of data and provide

a more flexible and scalable way of storing and retrieving data than traditional

relational databases. Their ability to handle unstructured or semi-structured data,

scale horizontally, and provide efficient distributed processing make them an

attractive option for modern applications that require high availability and

scalability. The graphical representa-

Fig. 1 Relationship between user, services and sessions in a live database

tion in Fig. 1 depicts the relationships among users, services, and sessions in

databases. The users/devices are represented by red crosses, and each user/device is

connected to multiple sessions and services, indicating that a single user can access

multiple services and have multiple sessions. The services are represented by blue

circles and are highly connected to both users/devices and sessions, showing that

services can be accessed by many users and can have many concurrent sessions. The

sessions are represented by yellow circles and have connections with both

International Journal of Information and Cybersecurity

45 | P a g e

users/devices and services, demonstrating that each session is associated with a

specific user/device accessing a particular service. The diagram illustrates a complex

network of interactions between users/devices, services, and sessions in databases,

highlighting the flexibility and complexity of user interactions with database driven

applications/services. when a user uses a particular service that creats a session, or

more than one service. Eventually, a users session starts as soon as they login or

access the database. A depiction of the breakdown of primary units in a database,

specifically focusing

Fig. 2 Breakdown of primary units in a Database

Sessions Services User / Device Sessions Services User / Device

Sessions Services User / Device

International Journal of Information and Cybersecurity

46 | P a g e

on the connections between users/devices, services, and sessions are given in Fig. 2.

Single User Block In this context, when a user utilizes a service it initiates a session.

However, its also possible for sessions to be registered without immediately using

any specific service as indicated by your statement. This could mean that in some

systems or applications, initiating or opening the application might automatically

start a session which then awaits for specific service requests or interactions from

the user. Single Sessions are typically registered by services as shown in Fig. 2b.

They act as intermediaries allowing communication between users/devices and

services ensuring data consistency and security among other roles. Each session can

be unique to ensure personalized experiences or data isolation depending on system

requirements. Single Service - Fig. 2c illustrates that single service can have multiple

communication channels with various users/devices leading to registration of

different sessions. This highlights scalability where one service handles requests

from multiple sources efficiently ensuring availability and performance.

B Anomaly detection in NoSQL
Detecting anomalies, those deviations from the expected within a dataset, forms a

crucial line of defense for securing and understanding our data. In the diverse

landscape of NoSQL databases, identifying these anomalies presents unique

challenges due to the inherent flexibility and lack of rigid structure. Here, we focus

into three key categories of anomalies, exploring their specific characteristics and

how they manifest in NoSQL environments.

a Point Anomalies
Imagine a lone data point standing out starkly against the backdrop of its peers. This

is the essence of a point anomaly, a single datum that significantly deviates from the

established norm. In NoSQL databases, where diverse data formats intermingle,

identifying such outliers can be tricky. A user login attempt from an unusual location,

a sensor reading exceeding known thresholds, or a sudden spike in a specific data

field âAS¸ these are potential˘ red flags demanding investigation. Statistical methods

like outlier detection and z-scores serve as sentinels, constantly vigilant for these

lone sentinels of the unexpected.

b Contextual Anomalies
While point anomalies jump out individually, contextual anomalies whisper their

secrets through subtle shifts in the relationships and behaviors within the data.

Consider an office building exhibiting high power consumption during the night

International Journal of Information and Cybersecurity

47 | P a g e

âAS¸ a stark deviation from˘ expected patterns based on context. Similarly, unusual

website traffic patterns or correlations between seemingly unrelated data points

within NoSQL databases can signal anomalies hidden within the intricate dance of

data. Techniques like time series analysis and clustering algorithms become crucial

interpreters, deciphering these subtle deviations from established patterns to unveil

hidden anomalies.

c Collective Anomalies
Not all anomalies stand alone. Collective anomalies emerge as groups of interrelated

data points, collectively deviating from normal behavior. Imagine a coordinated

cyberattack, where multiple sensors report abnormal readings simultaneously. Or, in

NoSQL databases, a surge of unsuccessful login attempts followed by a successful

one âAS¸ a pattern hinting˘ at brute-force attacks. Statistical analysis, correlation

analysis, and network traffic analysis become instrumental in identifying these

groups of interrelated anomalies, revealing the power of the pack in orchestrating

malicious activities.

Fig. 3 Proposed model

International Journal of Information and Cybersecurity

48 | P a g e

IV PROPOSED RNN BASED MODEL

The presented figure Fig. 3 outlines a comprehensive model designed for the

monitoring and analysis of data, with a focal point on the integration of a Recurrent

Neural Network (RNN).

The visual representation unfolds as follows:

A Monitoring Database and Real-Time Processing
Connected to this database is a monitoring system, depicted by grey servers. This

interconnection signifies the seamless flow of data from the database to the

monitoring system. The monitoring system, in turn, is responsible for the real-time

collection and processing of the incoming data. Our focus lies in real-time

monitoring of power consumption, performance metrics, and utilization of

computing nodes. The proposed model draws inspiration from established practices

in distributed systems, incorporating key components and concepts that optimize

data collection and analysis.

a Distributed Time Series Database
Our model relies on a distributed time series database, strategically built on Apache

Cassandra, a renowned NoSQL database recognized for its scalability and high

availability. This database architecture is meticulously designed to efficiently store

and manage time-stamped data points, making it particularly applicable to scenarios

demanding the handling of large volumes of time-series data. This component serves

as the cornerstone for our dataset monitoring system.

b Edge Computing with Embedded Measuring Boards
To facilitate real-time monitoring at the source of data generation, our framework

embraces edge computing principles. Agents are deployed on edge computing

nodes, each equipped with embedded measuring boards. These agents are designed

to monitor a spectrum of parameters, including power consumption, performance

metrics, and utilization. This approach proves invaluable in scenarios where

centralizing all monitoring processes is impractical or resource-intensive.

c Monitoring Agents and Hardware Sensors
Agents running on computing nodes play a pivotal role in our proposed model. They

are entrusted with the responsibility of monitoring key metrics, employing a

combination of software commands and hardware sensors. This comprehensive

International Journal of Information and Cybersecurity

49 | P a g e

approach ensures accurate measurements and provides deep insights into the

behavior of computing nodes. The detailed monitoring of hardware-related metrics

is particularly critical for performance optimization and anomaly detection within

the dataset.

d Data Management Backbone and MQTT Protocol
Measured values obtained from monitoring agents are seamlessly transmitted to a

central data management backbone. This communication is facilitated by the MQTT

(MQ Telemetry Transport) protocol, chosen for its suitability in low bandwidth, high

latency networks with minimal resource demands. The MQTT protocol emerges as

a crucial element in our architecture, ensuring efficient and reliable communication

between distributed components. This aligns seamlessly with applications where

real-time data transfer with minimal network resources is of paramount importance.

B Comparison with Historical Data
The monitored data, having undergone real-time processing, is subsequently

directed towards historical data repositories, represented by yellow folders. This step

involves a comparison between the current dataset and historical data to discern

patterns or anomalies. The integration of historical data enriches the analysis,

providing context for identifying deviations from established patterns. The

monitored data, continuously collected in real-time, undergoes processing to extract

relevant information and insights. This processing step can involve various

algorithms, statistical techniques, or machine learning models depending on the

nature of the data and the analysis goals. The processed real-time data is then

compared with historical data repositories. This comparison aims to discern patterns

or anomalies in the data. The integration of historical data enriches the analysis by

providing context for identifying deviations from established patterns, helping in the

detection of anomalies. Anomalies may manifest as unexpected spikes, drops, or

shifts in the data compared to historical norms.

C RNN Model
In our study, we employed recurrent neural networks (RNNs) for each virtual

machine within the infrastructure, as detailed in Section 4.3. This choice was

motivated by the finding that dedicated models tailored for specific nodes

outperformed a generic, universally applied model. The training data for each RNN

was sourced from node-related information collected by our monitoring

International Journal of Information and Cybersecurity

50 | P a g e

infrastructure. During the training phase, only data corresponding to the normal state

was utilized. The dataset comprises a diverse range of metrics, including core load,

frequency, temperature, virtual machine power consumption, room temperature,

GPU usage, and more. These metrics, also referred to as features, constituted the

input set for the RNNs. Each virtual machine had a dedicated training set

corresponding to two months of normal behavior, obtained in collaboration with

system administrators. Due to storage constraints, fine-grained monitoring data was

retained for no more than a week. Therefore, for training purposes, we employed

coarse-grained data, aggregated in five-minute intervals. Following the collection of

raw data, a preprocessing step was implemented, which involved tasks such as

removing data corresponding to periods when the monitoring system malfunctioned

and normalization. This preparatory phase took approximately 30 seconds per virtual

machine. The final set of features amounted to 166. A consistent network topology

was adopted for each virtual machine, employing an RNN model for sequence-based

learning. We chose this approach after empirical evaluation, considering its

suitability for capturing temporal dependencies within the data. The network

comprised three layers: an input layer, an output layer, and a hidden layer with

recurrent connections. We used Rectified Linear Units (ReLU) as the activation

function for neurons.

The input and output layers contained as many neurons as the number of features

(166), while the hidden layer was appropriately sized to capture temporal patterns.

Each RNN was trained with data specific to its corresponding virtual machine,

utilizing available computational resources. The training employed the Adam

algorithm, with the mean absolute error as the target loss. After preliminary

experiments, a batch size of 32 and 100 epochs were chosen. The training duration

for each RNN was approximately 20 seconds. It is noteworthy that training times

and overhead were not considered critical concerns, given that the training phase

occurred infrequently (once every few months) and could be scheduled during

maintenance periods. The Keras framework with TensorFlow as a backend

facilitated the design and training of the RNNs.

V RESULT ANALYSIS

We present a detailed analysis of our comprehensive evaluation of VoltDB (v4.x) as

a NewSQL database, with a specific focus on investigating the impact of varying the

replication degree (k). Our evaluation centered around the widely recognized TPC-

International Journal of Information and Cybersecurity

51 | P a g e

C benchmark, tailored for assessing Online Transaction Processing (OLTP)

workloads. Some of the key indexes te evaluate the study is given in Table 1.

A Anomaly detection key indexes

The Table 1, a list of key indexes for anomaly detection in network behavior and

memory and storage metrics. These indexes are important for identifying unusual

patterns in network traffic and system resource usage that may indicate malicious

activity or other types of anomalies. The table is organized into two categories:

network behavior and memory and storage. Within each category, the table lists

specific metrics that are commonly used to detect anomalies, along with a brief

description of each metric. By monitoring these metrics and identifying deviations

from expected behavior, security teams can quickly identify and respond to potential

security threats.

Table 1 Network Behavior and Memory and Storage Metrics

Network Behavior Memory and Storage

TCP Syn Recv IO Writes

Category: Connection Establishment Category: Data Storage

TCP MD5 Unexpected Memory Mapped

Category: Security Category: Memory Management

TCP SACK (Selective Acknowledgment) Memory Free

Category: Network Acknowledgment Category: Memory Management

TCP SACK Shifted

Category: Network Acknowledgment

TCP Resets

Category: Connection Termination

TCP Connection Active

Category: Connection State

International Journal of Information and Cybersecurity

52 | P a g e

TCP PAWS (Protect Against Wrapped

Sequence numbers)

Category: Network Security

This section provides a thorough examination of the results obtained from our

experiments, shedding light on VoltDB’s performance and scalability in different

replication scenarios [14], [18].

B Impact of Replication Degree (k)
To assess the performance and scalability of VoltDB, we systematically varied the

replication degree (k) across our experiments. The replication degree is a crucial

parameter that influences the fault tolerance and consistency of distributed

databases.

a Throughput
The throughput of the system was measured under different replication degrees.

Figure 4 illustrates the impact of k on the overall throughput. The result shows the

impact of repli-

Fig. 4 Impact of Replication Degree (k) on Throughput

cation degree (k) on the throughput of VoltDB, a distributed database system that

supports high-performance transactions. The result is based on an experiment where

International Journal of Information and Cybersecurity

53 | P a g e

the replication degree was varied from 1 to 3, and the throughput was measured in

transactions per second. The result indicates that increasing the replication degree

reduces the throughput of VoltDB, but not significantly. This is because higher

replication degree provides stronger consistency and fault tolerance, but also

introduces more overhead for writing and propagating data to multiple replicas. The

result also shows that the throughput reduction is more noticeable when k is doubled

from 1 to 2, than when it is increased from 2 to 3. This suggests that the marginal

impact of replication degree diminishes with higher k. The result also demonstrates

that VoltDB can achieve very high throughput even with high replication degree. For

example, at k=3, VoltDB can handle over 100K transactions per second, which is

impressive for a distributed database system. This implies that VoltDB can balance

performance and reliability effectively, and can support applications that require

both high speed and high availability.

b Latency

Latency is a critical metric in OLTP systems. Table 2 provides insights into the effect

of k on transaction latency. Latency varied across nodes, with Node33 exhibiting a

higher 97th percentile (0.95) but lower 99th percentile (0.93), suggesting potential

spikes in response times. Fig. 5 illustrates the impact of replication degree (k) on

transaction latency, generally showing a trend of latency reduction with higher k,

aligning with expectations of improved fault tolerance and consistency. However,

the trade-off between consistency and performance is evident, as higher replication

may impact latency, but not uniformly across nodes. The Table 2 Percentile Results

for Different Nodes

Node 97th Percentile 99th Percentile

node10 0.88 0.91

node12 0.90 0.92

node27 0.91 0.95

node33 0.95 0.93

node40 0.90 0.89

node41 0.87 0.83

International Journal of Information and Cybersecurity

54 | P a g e

choice of replication degree should therefore carefully consider application needs,

potentially tailoring k configurations for different nodes to balance performance and

consistency requirements.

Fig. 5 Impact of Replication Degree (k) on Latency

VI CONCLUSION

The increasing prevalence of NoSQL databases, while offering unparalleled

flexibility for handling diverse and unstructured data, also presents challenges in

terms of data consistency and security. The security incident at MongoDB

underscores the importance of robust anomaly detection techniques for maintaining

data accuracy and safeguarding against potential threats. In this paper, we explored

the application of machine learning, particularly recurrent neural networks (RNNs),

for automated anomaly detection directly within NoSQL databases. Our proposed

model, incorporating distributed time series databases, edge computing, and

historical data comparison, leverages the strengths of NoSQL databases while

addressing the evolving landscape of security threats. The RNNbased approach,

tailored for specific virtual machines, demonstrated superior performance in

capturing temporal dependencies within the data. The evaluation of VoltDB’s

performance and scalability, focusing on the impact of replication degree (k),

revealed insightful results. The trade-off between consistency and performance was

International Journal of Information and Cybersecurity

55 | P a g e

evident, with higher replication degrees influencing throughput and latency.

However, even at high replication degrees, VoltDB demonstrated impressive

throughput, balancing performance and reliability effectively.

While our study has made improvement in the integration of machine learning for

anomaly detection in NoSQL databases and understanding the performance nuances

of distributed databases like VoltDB, several avenues for future exploration and

improvement exist. Future research should explore deeper into refining anomaly

detection models, exploring advanced techniques beyond recurrent neural networks

(RNNs). Investigating the applicability of deep learning architectures, ensemble

methods, or hybrid models could contribute to more robust and accurate anomaly

detection systems. Additionally, research efforts should focus on adapting models to

dynamic changes in data schema, a common feature in NoSQL databases. Exploring

dynamic replication strategies in distributed databases is a promising avenue.

Adaptive replication mechanisms that adjust the replication degree (k) based on

workload characteristics, system performance, and anomaly detection results could

optimize both consistency and performance. This dynamic approach can offer an

intelligent trade-off, providing higher replication during critical periods and scaling

down during periods of lower demand.

REFERENCES

[1] C. Sauvanaud, M. Kaâniche, K. Kanoun, K. Lazri, and G. Da Silva Silvestre,

“Anomaly detection and diagnosis for cloud services: Practical experiments

and lessons learned,” Journal of Systems and Software, vol. 139, pp. 84–106,

May 2018.

[2] T. Halabi, M. Bellaiche, and A. Abusitta, “Online Allocation of Cloud

Resources Based on Security Satisfaction,” in 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And

Communications/ 12th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE), Aug. 2018, pp. 379–384.

[3] A. Aldribi, I. Traore, and B. Moa, “Data Sources and Datasets for Cloud

Intrusion Detection Modeling and Evaluation,” in Cloud Computing for

Optimization: Foundations, Applications, and Challenges, ser. Studies in Big

Data, B. S. P. Mishra, H. Das, S. Dehuri, and A. K. Jagadev, Eds. Cham:

Springer International Publishing, 2018, pp. 333–366.

International Journal of Information and Cybersecurity

56 | P a g e

[4] M. Mowbray, S. Pearson, and Y. Shen, “Enhancing privacy in cloud

computing via policy-based obfuscation,” The Journal of Supercomputing,

vol. 61, no. 2, pp. 267– 291, Aug. 2012.

[5] P. Team, “MongoDB data breach: Customer data stolen in cyber attack,” Jan.

2023. [Online].

[6] T. Halabi, M. Bellaiche, and A. Abusitta, “Toward Secure Resource

Allocation in Mobile Cloud Computing: A Matching Game,” in 2019

International Conference on Computing, Networking and Communications

(ICNC), Feb. 2019, pp. 370–374.

[7] S. V. G. Subrahmanya, D. K. Shetty, V. Patil, B. M. Z. Hameed, R. Paul, K.

Smriti, N. Naik, and B. K. Somani, “The role of data science in healthcare

advancements: Applications, benefits, and future prospects,” Irish Journal of

Medical Science (1971 -), vol. 191, no. 4, pp. 1473–1483, Aug. 2022.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”

ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[9] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E.

Ahmed, and M. Imran, “Real-time big data processing for anomaly detection:

A Survey,” International Journal of Information Management, vol. 45, pp.

289–307, Apr. 2019.

[10] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion detection

techniques in cloud environment: A survey,” Journal of Network and

Computer Applications, vol. 77, pp. 18–47, 2017. [Online]. Available:

https://www.sciencedirect. com/science/article/pii/S1084804516302417

[11] A. Praseed and P. S. Thilagam, “DDoS Attacks at the Application Layer:

Challenges and Research Perspectives for Safeguarding Web Applications,”

IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 661–685, 2019.

[12] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer, “Bayou: Replicated

database services for world-wide applications,” in Proceedings of the 7th

Workshop on ACM SIGOPS European Workshop: Systems Support for

Worldwide Applications, ser. EW 7. New York, NY, USA: Association for

Computing Machinery, Sep. 1996, pp. 275– 280.

https://www.sciencedirect.com/science/article/pii/S1084804516302417
https://www.sciencedirect.com/science/article/pii/S1084804516302417

International Journal of Information and Cybersecurity

57 | P a g e

[13] M. Stonebraker, “SQL databases v. NoSQL databases,” Communications of

the ACM, vol. 53, no. 4, pp. 10–11, Apr. 2010.

[14] “GitHub - VoltDB/voltdb: Volt Active Data.” [Online].

 Available: https:

//github.com/VoltDB/voltdb/tree/master

[15] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica, “Cake:

Enabling highlevel SLOs on shared storage systems,” in Proceedings of the

Third ACM Symposium on Cloud Computing. San Jose California: ACM, Oct.

2012, pp. 1–14.

[16] B. Eriksson, R. Durairajan, and P. Barford, “RiskRoute: A framework for

mitigating network outage threats,” in Proceedings of the Ninth ACM

Conference on Emerging Networking Experiments and Technologies. Santa

Barbara California USA: ACM, Dec. 2013, pp. 405–416.

[17] I. Kotenko, I. Saenko, and A. Branitskiy, “Machine Learning and Big Data

Processing for Cybersecurity Data Analysis,” in Data Science in

Cybersecurity and Cyberthreat Intelligence, L. F. Sikos and K.-K. R. Choo,

Eds. Cham: Springer International Publishing, 2020, vol. 177, pp. 61–85.

[18] “TPC-C Homepage.” [Online]. Available: https://www.tpc.org/tpcc/

https://github.com/VoltDB/voltdb/tree/master
https://github.com/VoltDB/voltdb/tree/master
https://www.tpc.org/tpcc/

