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Abstract 

This research   Traffic congestion is a growing problem in urban areas, leading to 

significant economic and environmental costs. Accurate prediction of traffic flow 

and congestion levels can help transportation planners and policymakers make 

informed decisions to alleviate congestion and improve traffic efficiency. Time 

series methods have been widely used for traffic prediction due to their ability to 

capture temporal dependencies and patterns in the data. This study aims to evaluate 

the performance of different time series methods for predicting traffic flow and 

congestion levels in urban networks. Five commonly used methods were examined, 

including Autoregressive Integrated Moving Average (ARIMA), Seasonal 

Autoregressive Integrated Moving Average (SARIMA), Vector Autoregression 

(VAR), Exponential Smoothing (ETS), and Long Short-Term Memory (LSTM). The 

strengths and limitations of each method were analyzed based on their ability to 

capture complex patterns, handle non-stationary data, and provide a measure of 

forecast uncertainty. Results showed that ARIMA and SARIMA can effectively 

model seasonal patterns and provide forecast uncertainty, but may struggle with 

capturing complex nonlinear relationships and sudden disruptions in traffic flow. 

VAR can capture interdependencies between road segments, but assumes linear 

relationships and requires a large amount of data. ETS can handle missing data and 

model trends and seasonality, but also assumes stationary data and may struggle with 

sudden changes in traffic flow. Finally, LSTM can capture complex nonlinear 
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relationships and handle multiple input variables and time lags, but requires a large 

amount of data to train and can be computationally expensive. 

Keywords: Congestion, Flow, Methods, Prediction, Traffic, Urban 

Introduction  

Traffic congestion is a pervasive problem that affects both developing and developed 

cities worldwide. It is a complex phenomenon that arises from several factors, 

including population growth, urbanization, inadequate infrastructure, and a lack of 

efficient public transportation systems [1], [2]. The economic costs of traffic 

congestion are enormous and can negatively impact a city's productivity and 

competitiveness. Traffic congestion can lead to increased fuel consumption, higher 

operating costs for businesses, decreased reliability in vehicular networks [3], [4], 

and reduced employee productivity. Moreover, traffic congestion can also have 

adverse environmental consequences, contributing to air pollution and greenhouse 

gas emissions. To address the challenges posed by traffic congestion, governments 

and transportation agencies worldwide are investing in new technologies to enhance 

traffic flow and travel efficiency. These include intelligent transportation systems 

(ITS), traffic management centers, advanced traffic signal control systems, and 

integrated corridor management systems. For instance, ITS uses real-time data to 

provide travelers with up-to-date information about traffic congestion, travel times, 

and alternate routes. 

Traffic flow prediction refers to estimating the number of vehicles expected to pass 

through a given roadway segment in a given time period. There are several 

techniques for predicting traffic flow, including statistical models, artificial neural 

networks, and machine learning algorithms. Congestion level prediction refers to 

estimating the degree of traffic congestion in a given roadway segment. This 

prediction helps transportation planners and operators identify congested roadways 

and take appropriate measures to alleviate congestion. There are several techniques 

for predicting congestion levels, including data-driven approaches, simulation 

models, and hybrid models [5]. 

Data-driven approaches use historical traffic data and other input features like 

weather, time of day, and road network characteristics to predict congestion levels 

[6], [7]. These approaches include statistical models, ANNs, and machine learning 

algorithms. 

Simulation models simulate traffic flow using mathematical models based on the 

fundamental principles of traffic flow. volume, speed, and density, along with 

external factors like weather conditions and road network characteristics, to predict 
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congestion levels [8]. Microsimulation models, mesoscopic models, and 

macroscopic models are some of the simulation models used for predicting 

congestion levels. Hybrid models combine data-driven approaches and simulation 

models to predict congestion levels. These models use historical traffic data and 

other input features to initialize simulation models and improve the accuracy of 

congestion level predictions.  

For transportation planners and operators, accurate predictions help optimize traffic 

management strategies and improve the efficiency of the transportation network. 

This, in turn, leads to reduced travel times, reduced fuel consumption, and reduced 

emissions. For the general public, accurate predictions can help them plan their 

travel routes, avoid congested roadways, and arrive at their destinations faster. This, 

in turn, leads to improved quality of life and reduced stress levels. 

Time series forecasting methods have emerged as a critical tool in many fields. The 

ability to predict future trends and patterns from historical data has been critical to 

many industries, including finance, retail, healthcare, and manufacturing [9], [10]. 

Time series forecasting techniques are particularly useful when dealing with data 

that varies over time, such as stock prices, sales, and weather patterns. These 

methods allow analysts to identify trends, patterns, and cycles in data that can be 

used to inform decision-making. 

The origins of time series forecasting can be traced back to the early 20th century 

when pioneers in the field, such as Yule and Walker, introduced statistical techniques 

to analyze data over time. These early methods focused on identifying trends and 

patterns in data using simple moving averages and exponential smoothing 

techniques. Over time, more sophisticated methods, such as ARIMA, ARCH, and 

GARCH, were developed to address the limitations of earlier approaches [6], [11]. 

These methods allowed analysts to model complex data patterns, including seasonal 

and cyclic patterns, and to account for the impact of external factors, such as changes 

in economic policy or weather events. Today, time series forecasting is a mature field 

with a wide range of applications and a rich set of tools and techniques. One such 

example is the use of time series model in quantifying the reliability and 

survivability of cellular networks as mentioned in [12].  Advances in computing 

power, machine learning, and artificial intelligence have further expanded the range 

of methods available to analysts [13]. As data becomes more complex and varied, 

time series forecasting will continue to play an essential role in helping organizations 

make informed decisions based on historical trends and patterns. 
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Time series methods  

Autoregressive Integrated Moving Average (ARIMA)  

Autoregressive Integrated Moving Average (ARIMA) is a popular time series 

method used in various fields such as finance, economics, and transportation. 

ARIMA is a statistical model that uses past observations to predict future values. In 

the context of urban transportation, ARIMA can be used to predict traffic flow and 

congestion levels. ARIMA takes into account various factors that can influence 

traffic flow, such as trends, seasonality, and other external factors. The model is 

widely used because it is simple to understand and easy to implement. It can provide 

accurate predictions and help urban planners and policymakers make informed 

decisions [14]–[16]. 

ARIMA is an acronym for Autoregressive Integrated Moving Average. The 

autoregressive component of the model takes into account the past values of the 

variable being predicted. The integrated component of the model accounts for the 

effects of differencing, which is a technique used to stabilize the variance of the time 

series data. The moving average component of the model models the errors or 

residuals of the time series. ARIMA is a versatile model that can handle various 

types of time series data, including stationary and non-stationary data. 

The ARIMA formula can be represented as follows: 

 

 

The reverse operator is represented by B, while the error term at time t is represented 

by εt. There are three parameters in the model: p, d, and q. Autoregressive is denoted 
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average is denoted by q. ARIMA has been used to predict traffic flow and congestion 

levels in urban networks. The model can take into account various external factors 

such as weather, events, and construction activities that can influence traffic flow. 

ARIMA can provide short-term and long-term predictions that can help urban 

planners and policymakers make informed decisions. Short-term predictions can be 

used to manage traffic flow in real-time, while long-term predictions can be used to 

plan infrastructure and transportation projects. ARIMA is a valuable tool that can be 

used to improve the efficiency and safety of urban transportation systems. 

Autoregressive Integrated Moving Average (ARIMA) has several strengths that 

make it a popular time series method for predicting traffic flow and congestion levels 

in urban networks. Firstly, ARIMA can capture the linear relationships between past 

observations and future values of traffic flow and congestion levels. This means that 

the model can identify patterns and trends in the data that can be used to make 

accurate predictions. Secondly, ARIMA can handle data with seasonal patterns. This 

is important for traffic data because traffic patterns can vary based on the time of 

day, day of the week, and season of the year. Lastly, ARIMA can provide a measure 

of forecast uncertainty. This allows urban planners and policymakers to assess the 

accuracy of the predictions and make informed decisions based on the level of 

uncertainty. 

The model may not be able to capture complex nonlinear relationships in the data. 

This means that the model may not be able to capture the effects of external factors 

that can influence traffic flow, such as weather, events, and construction activities. 

Secondly, ARIMA assumes that the data is stationary, which may not be the case for 

traffic data. Traffic patterns can change over time due to changes in infrastructure, 

population, and economic activity. Lastly, ARIMA may not perform well when there 

are sudden changes or disruptions in traffic flow. This is because the model is 

designed to capture gradual changes in the data and may not be able to adjust quickly 

to sudden changes. 

There are more advanced time series models that can capture complex nonlinear 

relationships in the data, account for non-stationary data, and handle sudden changes 

in traffic flow. These models include Autoregressive Conditional Heteroskedasticity 

(ARCH), Generalized Autoregressive Conditional Heteroskedasticity (GARCH), 

and Vector Autoregression (VAR). These models are more complex than ARIMA 

and require more data and computational power. However, they can provide more 
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accurate predictions and help urban planners and policymakers make more informed 

decisions. 

Seasonal Autoregressive Integrated Moving Average (SARIMA)  

Seasonal Autoregressive Integrated Moving Average (SARIMA) is a time series 

forecasting method that is widely used in various industries, including 

transportation, finance, and energy. SARIMA, which builds upon the ARIMA 

model, has two extra components. These are the seasonal autoregressive (SAR) 

component and the seasonal moving average (SMA) component. These additional 

components account for the influence of previous values and past forecast errors 

across multiple seasonal periods on the current value.  

 

 

The time series is represented by xt, while the difference operation is represented by 

∇. The reverse shift operator is denoted by B, and the period length is represented 

by s. The white noise sequence is represented by t. The parameters p, d, and q have 

the same meaning as in the ARIMA model. The parameters P, D, Q, and s denote 

seasonal autoregressive, seasonal difference, seasonal moving average order, and the 

length of the seasonal period, respectively.  

SARIMA is a variant of the Autoregressive Integrated Moving Average (ARIMA) 

model, which incorporates seasonality into the model. This makes SARIMA 

particularly useful in traffic prediction, where traffic patterns tend to exhibit seasonal 

patterns, such as rush hour traffic. The SARIMA model helps in predicting future 

traffic volumes accurately by taking into account both seasonal patterns and any 

other underlying trends and patterns in the data. SARIMA involves several 

parameters, including the order of the autoregressive (AR) and moving average 

(MA) components, as well as the order of differencing required to make the time 

series stationary. Additionally, SARIMA requires specifying the seasonal periods in 

the data, which can be challenging in traffic prediction since there may be multiple 

seasonal periods (e.g., daily and weekly patterns). Despite the complexity of the 

model, SARIMA can be a powerful tool for traffic prediction, providing accurate 
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forecasts that can help traffic planners make informed decisions about traffic 

management. 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model has 

several strengths that make it a popular choice for traffic prediction. One of its main 

strengths is its ability to capture seasonal patterns in traffic flow and congestion 

levels. By incorporating seasonality into the model, SARIMA can account for daily, 

weekly, and even yearly patterns in traffic volumes and congestion levels. This 

makes it a powerful tool for traffic planners, who can use SARIMA forecasts to 

anticipate traffic patterns and adjust traffic management strategies accordingly. 

SARIMA can handle non-stationary data by differencing the time series. Non-

stationary data is common in traffic prediction, where traffic volumes and congestion 

levels may exhibit trends or cyclical patterns over time. By differencing the time 

series, SARIMA can remove these trends and make the data stationary, which is 

necessary for accurate forecasting. This makes SARIMA a versatile model that can 

be applied to a wide range of traffic datasets. 

In addition, SARIMA can provide a measure of forecast uncertainty, which is 

important in traffic prediction where accurate forecasting is critical for traffic 

management decisions [17]. The model can produce confidence intervals around the 

forecasts, which provide a measure of how certain the model is about its predictions. 

This allows traffic planners to assess the reliability of the forecasts and make 

informed decisions based on the level of uncertainty. 

SARIMA has several limitations that should be considered when using it for traffic 

prediction. One limitation is that it may not be able to capture complex nonlinear 

relationships in the data. Traffic flow and congestion levels may be influenced by a 

wide range of factors, including weather conditions, special events, and road 

closures, among others. SARIMA assumes a linear relationship between these 

factors and traffic volumes, which may not always be accurate. 

SARIMA assumes that the data is stationary after differencing, which may not 

always be the case for traffic data. Sudden changes or disruptions in traffic flow can 

make the data non-stationary, which can lead to inaccurate forecasts. Careful 

consideration must be given to the model parameters and data pre-processing steps 

to ensure that the data is stationary before applying SARIMA. SARIMA may not 

perform well when there are sudden changes or disruptions in traffic flow. For 

example, accidents, road closures, or other unexpected events can cause sudden 
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changes in traffic volumes and congestion levels, which may not be accurately 

captured by the model. In these cases, other forecasting methods or real-time 

monitoring systems may be more appropriate for predicting and managing traffic 

flow. 

Vector Autoregression (VAR)  

Vector autoregression (VAR) is a statistical method used to model the 

interdependence between multiple time series variables. VAR models are commonly 

used in the analysis of macroeconomic time series data, but they can also be applied 

to other fields such as traffic prediction. In the context of traffic prediction, VAR 

models can be used to model the interactions between different road segments or 

intersections in the urban network. This allows for a more accurate prediction of 

traffic flow and congestion levels, which can help in the planning and optimization 

of traffic management systems. We provide a basic univariate AR(p) model that 

excludes any potential exogenous variables and may be stated as: 

1 1t t p t p ty y y   − −= + ++ +  

 

where yt is impacted by the p previous values, a constant (μ), and a random noise 
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The vector with n elements can be expressed as a function of n constants, previous 

p values of Yt, and a vector of n random disturbances ϵt that are present at each time 

step: 
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Where, the matrix of the coefficients are as follows: 
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VAR models can capture the dynamic relationships between variables over time. 

This means that VAR models can be used to analyze the impact of one variable on 

another, as well as the feedback loops between different variables. In the case of 

traffic prediction, VAR models can be used to model the impact of traffic volume on 

congestion levels, as well as the impact of congestion levels on travel time and traffic 

volume. By modeling these complex interactions, VAR models can provide a more 

accurate and comprehensive picture of traffic patterns in the urban network. VAR 

models can be used to model any number of variables, and they can be easily 

modified and updated as new data becomes available. This makes VAR models well-

suited to the dynamic and constantly evolving nature of traffic patterns in the urban 

network.  
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VAR models can be used to capture the interdependencies between different road 

segments or intersections in the urban network. This allows transportation planners 

and traffic management systems to gain a more comprehensive understanding of the 

complex relationships between different variables and make more informed 

decisions about traffic management strategies. By modeling the interactions between 

different road segments and intersections, VAR models can also help to identify 

potential bottlenecks and other sources of congestion, which can be targeted for 

improvement. VAR models can handle multiple time series data. This is particularly 

important in the context of traffic prediction, where there may be many different 

variables that influence traffic flow and congestion levels. VAR models can be used 

to model the impact of these variables on each other, as well as their collective 

impact on traffic patterns in the urban network. This can help transportation planners 

and traffic management systems to identify the most effective strategies for 

improving traffic flow and reducing congestion. 

VAR models can also provide a measure of forecast uncertainty, which is another 

key strength of this approach. By estimating the degree of uncertainty associated 

with each forecast, transportation planners and traffic management systems can 

make more informed decisions about the allocation of resources and the 

implementation of traffic management strategies. This can help to reduce the 

likelihood of unexpected traffic disruptions and improve overall traffic flow in the 

city. The models may not be able to capture complex nonlinear relationships in the 

data. This is because VAR models assume that the relationships between variables 

are linear, which may not always be the case for traffic data. As a result, VAR models 

may not be able to fully capture the complex dynamics of traffic flow and congestion 

in the urban network. 

These models may require a large amount of data to accurately estimate the model 

parameters. This can be particularly challenging in the context of traffic prediction, 

where data may be sparse or difficult to collect. Additionally, the accuracy of VAR 

models may be sensitive to the choice of model parameters and the specification of 

the model structure. Therefore, it is important to carefully evaluate the assumptions 

and limitations of VAR models when using this approach for traffic prediction. 

Exponential Smoothing (ETS)  

Exponential smoothing (ETS) is a widely used time series forecasting technique that 

is based on the principle of weighted averages of past observations. This method is 

particularly useful for predicting future values of a time series that exhibit patterns 



 
 

International Journal of Information and Cybersecurity 

11 | P a g e  

such as trends, seasonality, and other systematic variations. The ETS method applies 

a smoothing factor to the historical data to create a smoothed forecast. The 

smoothing factor is usually chosen to give more weight to the more recent 

observations, and less weight to the older ones. 

Simple exponential smoothing has the following component form: 
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where l t represents the series' level (or smoothed value) at time t. Setting h = 1 yields 

the fitted values, while setting t = T yields the genuine predictions beyond the 

training data. 

The forecast equation demonstrates that the predicted value at time t + 1 is the 

estimated level at time t. The level smoothing equation (also known as the level 

equation) offers the estimated level of the series at each period t. 

Holt expanded simple exponential smoothing to make it possible for trend 

predictions in data. A prediction equation and two smoothing equations are used in 

this method: 
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where lt denotes an estimate of the series' level at time t, bt denotes an estimate of 

the series' trend (slope) at time t, 0≤α*≥1  is the smoothing parameter for the level, 

and  0≤β*≥1 is the smoothing parameter for the trend. 

The method is able to capture trend, seasonality, and other variations that can occur 

in the data. For example, when a time series exhibits a clear trend, ETS can be used 

to predict future values by adjusting the weights given to past observations to reflect 
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the trend. Similarly, when a time series exhibits seasonal patterns, ETS can be used 

to predict future values by adjusting the weights given to past observations to reflect 

the seasonal variations.  

By adjusting the weights given to past observations, ETS can effectively model these 

patterns, which can be particularly useful for predicting traffic patterns over time. 

Additionally, ETS can provide a measure of forecast uncertainty, which can help 

transportation planners and engineers make more informed decisions about 

infrastructure planning and management. Another strength of ETS is its ability to 

handle missing data. This is particularly useful for traffic data, which may have gaps 

due to sensor malfunctions, construction, or other factors. 

However, there are also limitations to using ETS for traffic forecasting. One 

limitation is that it may not be able to capture complex nonlinear relationships in the 

data. For example, if there are interactions between traffic patterns and weather 

conditions, ETS may not be able to model these relationships effectively. 

Additionally, ETS assumes that the data is stationary, which may not always be the 

case for traffic data. Traffic flow can be affected by a variety of factors, such as 

construction, accidents, or changes in road conditions, which can make the data non-

stationary. Finally, ETS may not perform well when there are sudden changes or 

disruptions in traffic flow, such as a major accident or a road closure. In these 

situations, other forecasting techniques, such as autoregressive integrated moving 

average (ARIMA) or machine learning algorithms, may be more effective. 

Long Short-Term Memory (LSTM)  

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) that 

has gained popularity in recent years, especially in the field of time series prediction. 

Unlike traditional neural networks, LSTM has a unique architecture that allows it to 

store and process information over time [18]–[20]. This makes it particularly 

suitable for analyzing sequences of data, such as those found in stock prices, weather 

patterns, or even the movements of pedestrians in a busy city. LSTM is known for 

its ability to learn complex patterns in the data, such as trends, seasonal variations, 

and sudden changes in behavior. This makes it a powerful tool for predicting future 

trends and making accurate forecasts. LSTM has been successfully used in a wide 

range of applications, including speech recognition, natural language processing, 

and image recognition. 

The LSTM calculation process can be described as follows: 
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The first step involves calculating the forget gate (ft), which determines how much 

information is discarded. The calculation for ft can be expressed as follows: 

( )1ft f t f t fU x W h b −= + +  

The equation for ft involves adjustable parameter matrices or vectors, denoted as Uf, 

Wf, and bf, which represent the forgetting gate and can be optimized during neural 

network training. The sigmoid activation function, represented as σ, is applied to the 

weighted sum of the input and previous cell state. 

The second step involves calculating the input gate (it), which determines the 

amount of information used to update the cell state. 

( )1it i t i t iU x W h b −= + +  

The calculation for it also involves adjustable parameter matrices or vectors, denoted 

as Ui, Wi, and bi, which represent the input gate and can be optimized during neural 

network training. The formula for the newly acquired information C˜t can be 

expressed as follows: 

( )˜ ˜ ˜

˜

1tant t t
C C C

C h U x W h b−= + +  

The equation for the newly acquired information, denoted as C˜t, also involves 

adjustable parameter matrices or vectors, represented as UC˜, WC˜, and bC˜, which 

can be optimized during neural network training. The hyperbolic tangent activation 

function, represented as tanh, is applied to the weighted sum of the input and 

previous cell state. 

The third step involves updating the cell state, which is calculated as follows: 

˜

t 1 tC  f C i tt t C−=  +   

The equation involves a matrix multiplication operation represented by the symbol 

∗. The cell state, denoted as Ct, is updated based on the results of the forget gate and 

the newly acquired information. Since the cell state interacts linearly with other 

LSTM units, information can be retained for a longer period of time. 



 
 

International Journal of Information and Cybersecurity 

14 | P a g e  

The fourth step involves calculating the output gate (ot), which generates the hidden 

layer state variable ht at time t. The formulas for calculating ot can be expressed as 

follows: 

( )

( )

1o

tanh

t o t o t o

t t t

U x W h b

h o C

 −= + +

= 
 

The equation for calculating the output gate (ot) also involves adjustable parameter 

matrices or vectors, denoted as Uo, Wo, and bo, which represent the output gate and 

can be optimized during neural network training. 

The fifth and final step involves calculating the output (yt) using the following 

formula: 

yt d t dW h b= +  

The equation for calculating the output (yt) involves adjustable parameter matrices 

or vectors, represented as Wd and bd, which belong to the output layer and can be 

optimized during neural network training. 

One area where LSTM has shown particular promise is in predicting traffic flow and 

congestion levels in urban networks. Traffic prediction is a complex problem that 

depends on a variety of factors, including the time of day, weather conditions, and 

the behavior of individual drivers. Traditional traffic models rely on statistical 

methods and assumptions about traffic patterns, which can be imprecise and fail to 

capture the complex interactions between different elements of the traffic system. 

LSTM, on the other hand, is capable of learning the patterns and relationships within 

the data itself, making it a more accurate and flexible tool for traffic prediction. By 

analyzing historical traffic data and other relevant factors, LSTM can make accurate 

predictions about traffic flow and congestion levels, which can help city planners 

and transportation authorities optimize traffic flow and reduce congestion. 

One of the most significant strengths of LSTM is its ability to capture complex 

nonlinear relationships in the data. This means that the model can learn to identify 

patterns and relationships that are difficult to detect using traditional statistical 

methods. Additionally, LSTM can handle multiple input variables and time lags, 

making it more versatile than many other prediction models. This allows it to 

analyze complex data sets with many different factors, such as weather patterns, 
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traffic flow, and financial data. Another important strength of LSTM is its ability to 

learn from past errors to improve future predictions. This is because LSTM has a 

built-in feedback mechanism that allows it to adjust its predictions based on past 

performance. This makes it more accurate and reliable over time, improving its 

usefulness in many different applications. 

LSTM requires a large amount of data to train the model effectively. This means that 

the accuracy of the predictions is directly tied to the amount of data available, which 

can limit its usefulness in some applications. Additionally, LSTM can be 

computationally expensive to train and implement, especially for large data sets. 

This can make it difficult for smaller organizations or individuals to utilize the model 

effectively. LSTM can be difficult to interpret and diagnose if the model does not 

perform well. This is because the model is based on complex mathematical 

algorithms, and errors can be difficult to identify and correct without extensive 

knowledge of the model and its underlying principles [21]. 

Conclusion  

When considering the selection of a time series method for predicting traffic flow 

and congestion, it is crucial to take into account the unique characteristics of the data 

and the objectives of the prediction task. Among the popular time series methods for 

traffic prediction are ARIMA, SARIMA, VAR, ETS, and LSTM. 

ARIMA and SARIMA are suitable for capturing linear and seasonal relationships 

between past observations and future traffic flow and congestion levels. ARIMA is 

a robust method that can handle data with seasonal patterns and provide a measure 

of forecast uncertainty. However, it may not be suitable for capturing complex 

nonlinear relationships in the data, and it assumes that the data is stationary, which 

may not always be the case for traffic data. Moreover, sudden changes or disruptions 

in traffic flow may affect the performance of ARIMA. 

SARIMA, on the other hand, is for capturing seasonal patterns in traffic flow and 

congestion levels. It can handle non-stationary data by differencing the time series 

and can provide a measure of forecast uncertainty. However, it may not be able to 

capture complex nonlinear relationships in the data, and it assumes that the data is 

stationary after differencing, which may not always be the case for traffic data. 

Additionally, sudden changes or disruptions in traffic flow may also affect the 

performance of SARIMA. 

VAR is an appropriate method for modeling interdependencies between different 

road segments or intersections in an urban network. It can handle multiple time 
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series data and provide a measure of forecast uncertainty. However, it may not be 

able to capture complex nonlinear relationships in the data, and it assumes that the 

relationships between the variables are linear, which may not always be the case for 

traffic data. Moreover, a significant amount of data may be required to accurately 

estimate the model parameters for VAR. 

ETS can capture trends, seasonality, and handle missing data in traffic flow and 

congestion levels. It can provide a measure of forecast uncertainty. However, it may 

not be able to capture complex nonlinear relationships in the data, and it assumes 

that the data is stationary, which may not always be the case for traffic data. 

Furthermore, sudden changes or disruptions in traffic flow may affect the 

performance of ETS. LSTM can capture complex nonlinear relationships in the data. 

It can handle multiple input variables and time lags and learn from past errors to 

improve future predictions. However, LSTM requires a large amount of data to train 

the model and can be computationally expensive to train and implement. 

Additionally, the model can be difficult to interpret and diagnose if it does not 

perform well. 

One limitation of the study is that it focuses on the technical aspects of time series 

methods, such as their ability to capture complex patterns and handle non-stationary 

data. However, it does not consider the practical limitations of implementing these 

methods in real-world settings. For example, the study does not address the data 

collection and processing requirements of each method or the feasibility of using 

them in different transportation contexts, such as rural areas or developing countries. 

Therefore, the applicability and scalability of the methods need to be considered in 

future research, along with their technical performance. 
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