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Abstract 
The rapid expansion of cloud computing has been tempered by concerns surrounding privacy 

and security. To tackle these issues, intrusion detection systems with machine learning 

techniques are increasingly being deployed in cloud environment.  However, computational 

cost and model complexity remain major challenges. To this end, the present study proposed 

a dimensionality-reduction based IDS for cloud computing environments to minimize 

computational costs in cloud environment. Using the CSE-CIC-IDS2018 dataset, which 

comprises about 16 million instances and covers a broad array of attack types, we applied 

dimensionality reduction methods Principal Component Analysis (PCA), Non-negative 

Matrix Factorization (NMF), and High Correlation Filter. The resulting feature set was 

narrowed down to 12 essential features, which include flow duration and rate metrics, packet 

count and size metrics in both forward and backward directions, inter-arrival time metrics 

for flows in both directions, TCP flag metrics, header size metrics, and bulk transfer metrics 

in both forward and backward directions. Machine learning models were then trained to 

classify instances as either benign or attack-oriented. The models employed for classification 

were Gradient Boosting, Random Forest, Support Vector Machines (SVM), k-Nearest 

Neighbors (k-NN), and Logistic Regression, listed in order of performance. This research 

argued that dimensionality reduction not only simplifies the machine learning models but 

also reduces computational costs and the risk of overfitting, thereby improving the cost and 

computational efficiency and reliability of intrusion detection systems in cloud computing. 

Keywords: Cloud Computing, Intrusion Detection System, CICIDS2018, Dimensionality 

Reduction, Machine Learning 
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Introduction  

In recent years, the adoption of cloud-based services has become increasingly 

prevalent among modern enterprises. This transition allows organizations to focus 

more on their core business activities by outsourcing the management of IT-related 

tasks to third-party vendors.  While cloud providers generally adhere to industry best 

practices to maintain the security of their infrastructure, the onus of safeguarding 

data and applications often remains with the enterprise (1, 2). It is crucial for 

organizations to understand that migrating to the cloud does not absolve them of 

their responsibilities concerning data asset security and accountability. Measures 

such as encryption, access control, and regular auditing are essential to protect 

sensitive data. Moreover, coordination between internal security teams and cloud 

service providers is vital to establish a secure environment, especially in hybrid or 

multi-cloud deployments (3, 4). 

The risks associated with inadequate cloud security have been exacerbated by the 

increasing sophistication of cyber threats. Cloud computing environments have 

become prime targets for attackers, partly because organizations often lack visibility 

and control over data access and movement within the cloud. Advanced threats, such 

as data breaches, ransomware, and insider attacks, can exploit vulnerabilities in the 

cloud infrastructure or applications. Failure to implement robust security protocols 

can result in significant governance and compliance risks, especially when handling 

sensitive client information (5, 6).  

Intrusion detection focuses on the accurate identification of potential threats that 

could damage or compromise an information system. The primary objective of an 

intrusion detection system (IDS) is to promptly detect and alert administrators about 

any malicious activities, ensuring that timely countermeasures can be taken to 

safeguard the integrity of the system. Such systems are designed to recognize a wide 

range of attacks, thereby ensuring the protection of valuable data and preserving the 

functionality of the system (7, 8). 

An IDS can be categorized based on where it is deployed and the type of data it 

analyzes. A host-based IDS, for example, is primarily concerned with the internal 

monitoring of a specific computer or system. It operates by examining the activities 

within the system it is installed on. Some of the primary tasks performed by a host-

based IDS include monitoring changes to the Windows registry, analyzing logs for 

suspicious activities, and checking the integrity of files. This type of system provides 

an in-depth view of what is happening inside the host, offering a line of defense 

against threats that may originate from within the system (9). 
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On the other hand, a network-based IDS operates by monitoring and analyzing 

network traffic. It looks for patterns or signatures that might indicate malicious 

activities. This type of system is especially important for detecting threats that aim 

to exploit vulnerabilities in the network or disrupt its operations. Examples of threats 

that a network-based IDS might detect include Denial-of-Service (DoS) attacks, 

SQL injection attacks, and password attacks (10, 11).  

Intrusion Detection Systems (IDS) are primarily classified into two categories based 

on their detection methodologies: signature-based and anomaly-based. The 

signature-based IDS operates by relying on a predefined database of known attack 

patterns or signatures. These patterns are derived from previously identified and 

analyzed malicious activities. When incoming traffic matches any of these known 

patterns, the IDS triggers an alert, indicating a potential intrusion. However, one of 

the major limitations of signature-based IDS is its inability to detect novel or 

previously unknown attacks (12, 13). Because of this limitation, the database 

containing attack signatures must be incessantly updated. This constant need for 

updates ensures that the system remains effective against the latest threats but can 

also be resource-intensive and requires vigilant monitoring to ensure that the system 

is always equipped with the most recent attack signatures. 

In contrast to the signature-based approach, anomaly-based IDS operates by 

establishing a baseline of what is considered "normal" behavior within a system or 

network. This baseline is derived from a comprehensive analysis of regular and 

benign traffic patterns over a specific period. Once this standard behavior is 

established, the anomaly-based IDS continuously monitors the system or network 

for any deviations from this baseline (14, 15). Such deviations, which could be 

sudden spikes in traffic, unusual access patterns, or any other irregularities, are 

flagged as potential threats. What sets anomaly-based IDS apart is its inherent ability 

to detect previously unknown attacks or zero-day vulnerabilities, as it does not rely 

on known patterns but rather on behavioral deviations. 

Intrusion Detection Systems (IDS) in a cloud computing environment serve as a 

critical layer of security to monitor, detect, and flag malicious activities or policy 

violations. The architecture and deployment of IDS in the cloud differ from those in 

traditional network settings due to the inherent complexities and unique 

characteristics of cloud environments, such as virtualization, resource pooling, and 

elasticity. For instance, in cloud infrastructures, IDS can be deployed at different 

levels, such as host-based, network-based, or hypervisor-based, to monitor different 

types of data, from network packets to system calls and logs. Host-based IDS may 
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be installed on each virtual machine, while network-based IDS monitor traffic 

between virtual machines and external networks (16, 17). Hypervisor-based IDS 

operate at the hypervisor level to oversee activities across multiple virtual machines. 

Reducing computational costs in Intrusion Detection Systems (IDS) deployed in 

cloud computing environments is of significant importance for several reasons. 

Cloud computing is fundamentally based on the model of resource sharing and 

virtualization, where resources like processing power, memory, and storage are 

allocated dynamically. High computational costs for running IDS could lead to 

inefficient use of these shared resources, thereby affecting not only the IDS but also 

other services and applications running on the cloud. If IDS consumes excessive 

resources, there may be less availability for other tasks, which could result in service 

degradation or increased operational costs. Efficient resource utilization is especially 

critical in cloud environments that scale dynamically according to demand, as an 

IDS with high computational costs could impede this scalability (18). 

The economic aspect cannot be ignored. Implementing an IDS with high 

computational requirements would necessitate more powerful hardware or 

additional instances, thereby increasing the overall cost of operation. This negates 

some of the cost benefits associated with cloud computing. Additionally, cloud 

service providers often charge based on resource usage; hence, an IDS that uses 

excessive computational resources could lead to increased operational expenses for 

the end-users. In a competitive market, where businesses are highly cost-sensitive, 

such additional costs could be detrimental to the adoption of cloud services. 

High-dimensional data, consisting of various attributes and features of network 

packets, can slow down the IDS, leading to delayed responses and potential security 

risks. Implementing dimensionality reduction techniques can expedite the detection 

process by reducing the computational burden on the system, enabling quicker and 

more effective responses to potential threats. This not only enhances security but 

also allows for better allocation of cloud resources, which could otherwise be wasted 

on unnecessary computations. 

 

Experimental methods  

Figure 1. depicts the proposed model where CICIDS2018 dataset(19) is initially 

collected. The data undergoes preprocessing steps like cleaning and transformation. 

For dimensionality reduction, three technique s—PCA, NMF, and High Correlation 

Filter—are applied. The selected features are then used for training and testing a 

classification model to differentiate between benign and attack targets. The 
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evaluation metrics include accuracy, precision, recall, and F1-score, which are 

calculated based on the classification results. 

Figure 1. Proposed IDS in cloud computing environment with dimensionality reduction  
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Dimensionality reduction  

High-dimensional data is often burdensome in terms of storage, computation, and 

network transfer. For example, machine learning models trained on high-

dimensional data may require significantly more computational resources for 

training and inference (20, 21). This increased requirement can lead to slower 

processing times and higher resource allocation, subsequently driving up the 

operational costs in a cloud environment where resources are billed based on usage. 

In cloud-based data analytics or real-time monitoring systems like IDS, high-

dimensional data can also lead to challenges in scalability and real-time processing. 

Handling a large number of features in real-time analytics could result in latency and 

decrease the system’s ability to scale dynamically according to demand. When 

dimensionality reduction techniques such as Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), or feature selection methods are applied, the 

essential characteristics of the data are retained while reducing the number of 

features. This reduced dataset is more manageable computationally, allowing for 

quicker data processing, less storage space, and ultimately, cost savings. The reduced 

computational burden enables the cloud environment to allocate resources more 

efficiently, thereby allowing for better scalability and potentially lowering the costs 

for both the service provider and the end-users. 

Principal Component Analysis (PCA) 

PCA is used to transform the original variables into a new set of variables known as 

principal components, which are orthogonal to each other, and reflect the maximum 

variance in the data (22). The first principal component reflects the most variance, 

the second (which is orthogonal to the first) reflects the second most, and so on. 

Mathematically, given a data matrix ( 𝐗 )  of dimensions ( 𝐧 × 𝐩 ) where, (n), is the 

number of observations and p is the number of variables), PCA seeks to find a set of 

( 𝒑 ) orthogonal vectors (𝒖𝟏, 𝒖𝟐, … , 𝒖𝒑) that maximize the following: 

[Var(𝑿𝒖) = 𝒖𝑻𝜮𝒖] 

Subject to: 

[𝒖𝑻𝒖 = 𝟏] 

Where ( Σ)  is the covariance matrix of ( 𝑋 ) 
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Non-negative Matrix Factorization (NMF) 

NMF is used to factorize a non-negative matrix ( V ) into two lower-dimensional 

non-negative matrices ( 𝑾 )  and  ( 𝑯 ),  such that ( 𝑽 ≈ 𝑾 × 𝑯 ). Given a matrix 

( V ) of dimensions ( n × m ), NMF aims to find matrices ( W ) of dimensions 

( 𝒏 × 𝒌 ) 𝒂𝒏𝒅 ( 𝑯 ) of dimensions ( 𝒌 × 𝒎 ), where ( 𝒌 ) is much smaller than 

( 𝒏 ) 𝒂𝒏𝒅 ( 𝒎 ), to approximate ( 𝑽 ). The objective function to minimize is often: 

[|𝑽 − 𝑾𝑯|𝑭
𝟐] 

Where (| ⋅ |𝐅) is the Frobenius norm. 

High Correlation Filter 

The High Correlation Filter is a feature selection method that removes features that 

are highly correlated with each other, retaining only one feature from each set of 

correlated features. Given a set of features (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑), this method computes 

the correlation matrix ( 𝑹 ), where the element (𝒓𝒊𝒋) represents the correlation 

between (𝑿𝒊)𝒂𝒏𝒅(𝑿𝒋).  Features are filtered out based on a threshold ( 𝒕 ), such that 

if (|𝒓𝒊𝒋| > 𝒕), one of (𝑿𝒊)𝒐𝒓(𝑿𝒋) is removed. 

Machine Learning models 

Gradient Boosting is a machine learning technique used for classification and 

regression tasks, among other predictive modeling applications. It builds on the idea 

of combining weak predictors to create a strong predictor by focusing on the 

mistakes made by previous predictors in the ensemble. The algorithm iteratively 

adds trees that correct the residuals—differences between observed and predicted 

values—of the existing ensemble. A shrinkage parameter, often referred to as the 

learning rate, controls the influence of each new tree. By emphasizing instances that 

were previously misclassified, Gradient Boosting adapts to the weaknesses of the 

overall model.  

Random Forest is another ensemble learning method that performs well for both 

classification and regression tasks. Unlike Gradient Boosting, which is sequential, 

Random Forest constructs multiple decision trees during training and outputs the 

mode or mean prediction of the individual trees for classification or regression, 

respectively. Random Forest introduces randomness by selecting a subset of features 

at each split while growing a tree and by bootstrapping samples for each tree. This 

results in a set of diverse decision trees that collectively deliver a more robust and 

stable prediction. The algorithm is computationally efficient and less prone to 
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overfitting, as the averaging of multiple trees mitigates the risk of capturing noise in 

the training data. 

Support Vector Machines (SVM) are designed for binary classification tasks, though 

extensions for multi-class classification and regression do exist. The core idea 

behind SVM is to find the hyperplane that maximally separates two classes of data 

points in the feature space. For data that is not linearly separable, SVM uses kernel 

functions to map the data to a higher-dimensional space where it can be linearly 

separated. Margin maximization ensures that the decision boundary maximizes the 

distance between the closest data points from different classes, enhancing the 

generalization capability of the model. One of the limitations of SVM is its 

sensitivity to the choice of the kernel and regularization parameters. 

The k-Nearest Neighbors (k-NN) algorithm is a type of instance-based learning that 

can be used for both classification and regression. It works by comparing a test 

sample with k training samples that are closest in the feature space. The output is 

determined by a majority vote for classification tasks or by an average for regression 

tasks. Distance metrics, such as Euclidean distance, are typically used to identify the 

nearest neighbors. The algorithm is simple to implement and understand but can be 

computationally intensive during the prediction phase, particularly when dealing 

with large data sets. Additionally, the choice of k and the distance metric can 

significantly affect the algorithm's performance. 

Logistic Regression, despite its name, is primarily used for binary classification 

problems. The algorithm models the probability that the target variable belongs to a 

particular category, typically by using the logistic function to transform a linear 

combination of the input features. The coefficients for the features are generally 

estimated through maximum likelihood estimation. Unlike more complex 

algorithms like Gradient Boosting and Random Forest, Logistic Regression provides 

a less flexible but more interpretable model, offering insights into the importance of 

individual features. The algorithm assumes that there is a linear relationship between 

the log-odds of the output and the input features, which may not hold true for all 

data sets. 

 

 

 

Dataset  

The CSE-CIC-IDS2018 dataset was developed by the Canadian Institute for 

Cybersecurity (CIC) (19) in collaboration with the Communications Security 
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Establishment (CSE) to address limitations in existing datasets, particularly their 

inability to represent modern network traffic patterns and attack methods. The 

dataset is an extensive collection of labeled network traffic records, generated by 

simulating a real-world organizational network environment. The data incorporates 

various types of attacks including Brute Force, DoS, Heartbleed, Web Attack, 

Infiltration, and Botnet, among others, in addition to benign network traffic. One of 

the most distinctive features of the CSE-CIC-IDS2018 dataset is its extensive feature 

set, comprising of 80 network traffic attributes, which enhances its suitability for 

complex analysis tasks (23). 

The CSE-CIC-IDS2018 dataset is often compared with other benchmark datasets in 

the field of intrusion detection, such as KDD Cup 1999, NSL-KDD, and ISCX 2012. 

Table 1 provides a comparison among the benchmark datasets for IDS (24).  

 
Table 1. intrusion detection benchmark datasets 

Dataset Feature Limitations Notable Features 

CSE-CIC-

IDS2018 

Broad array of modern 

attack types, extensive 

feature set, high volume 

of data. 

Class imbalance. Suitable for training complex 

machine learning models, 

detailed environment for 

research. 

KDD Cup 

1999 

Historically important 

for initial studies. 

Outdated, lacks 

diversity in attack 

types. 

No longer highly relevant due 

to evolving cyber-attacks. 

NSL-KDD Improvement over KDD 

Cup 1999, reduced 

redundant records. 

Still lacks diversity 

in attack types. 

Addresses some limitations of 

KDD Cup 1999. 

ISCX 2012 Includes contemporary 

attack types, focus on 

realistic network 

environment. 

Class imbalance, 

less extensive 

feature set than 

CSE-CIC-

IDS2018. 

Similar to CSE-CIC-IDS2018 

but with fewer features and 

lower data volume. 

 

 

Designed to be comprehensive in terms of network traffic patterns and intrusion 

scenarios, the CSE-CIC-IDS2018 dataset aids in evaluating the performance of 

various intrusion detection models. It is formulated to be compatible with machine 

learning methodologies, offering a testing environment for data preprocessing 

techniques, feature selection methods, and algorithmic model evaluations. CSE-

CIC-IDS2018 dataset provides a more up-to-date and detailed environment 

compared to other benchmark dataset for intrusion detection system.  
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Table 2. Types of Attacks in CSE-CIC-IDS2018 

Attack Type Description 

Brute Force Unauthorized user tries to gain access by guessing passwords or exploiting 

vulnerabilities. 

DoS/DDoS Aim to overwhelm a network or service with excessive data to make it 

unavailable. 

Web Attacks Includes SQL Injection, Cross-Site Scripting (XSS), and other attacks 

targeting web applications. 

Infiltration Unauthorized user gains access to a network without detection. 

Botnet A network of compromised computers controlled by an attacker for tasks like 

spamming or data theft. 

Port Scanning Scanning a network to find open ports for exploitation. 

Packet Sniffing Intercepting and logging network traffic, usually to glean sensitive 

information. 

Man-in-the-Middle Interception of communications between two parties to steal or manipulate 

data. 

 

 

Dimensionality reduction Results 

The lower eigenvalue (the red line) in figure 2 at the 12th component suggests that 

one would most likely keep the first 12 components for subsequent steps in data 

analysis, as the eigenvalues after this point do not contribute significantly to 

explaining the variance in the data. 

In Figure 3, the reconstruction error is plotted against the number of components, 

ranging from 1 to 17. The reconstruction error starts at 120 when there is only one 

component and generally decreases as more components are added. The purpose of 

such a plot is to help determine the optimal number of components for NMF by 

identifying a point where adding more components does not significantly reduce the 

reconstruction error. In this research, one might consider that the reconstruction error 

starts to stabilize around 12 to 13 components, as the error values become less 

variable and decline more slowly after that point. 

Flow Duration and Rate Metrics comprise features such as flow duration (fl_dur), 

flow byte rate (fl_byt_s), and flow packet rate (fl_pkt_s). These metrics are essential 

for characterizing the temporal behavior of network flows. Flow duration is the 

length of time for which a flow exists, and it can offer critical insights into whether 

a flow is short-lived (possibly indicative of a scan or attack) or long-lived (more 

likely to be a legitimate user session). Flow byte rate and flow packet rate represent 

the rate at which bytes and packets are being transferred over the network, 

respectively. A sudden spike in these rates could indicate data exfiltration, flooding 
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attacks, or other abnormal activities, while consistently low rates might suggest an 

idle or less active session. Monitoring these metrics allows security administrators 

to set baseline patterns and thereby identify anomalies in network traffic. 

Packet Count Metrics in Forward Direction include total packets in the forward 

direction (tot_fw_pk), average number of packets in a sub-flow in the forward 

direction (subfl_fw_pk), and the number of packets with at least one byte of TCP 

data payload in the forward direction (Fw_act_pkt). These features can serve as 

indicators of the nature and quantity of outgoing traffic.  

 
Figure 2. Scree plot under Principal Component Analysis (PCA) 

 

A high total packet count in the forward direction could imply either large data 

transfers or potential flooding attacks, depending on the context. On the other hand, 

metrics like the average number of packets in a sub-flow and the number of packets 

with payload data could provide more granular insights into the types of data being 

sent. For instance, a high count of packets with payload could suggest legitimate 

data transfer, while an absence might raise suspicions of covert channel 

communication or scanning activities. 

Packet Size Metrics in Forward Direction and Backward Direction consist of a 

variety of features that measure different aspects of packet size. In the forward 

direction, features like tot_l_fw_pkt, fw_pkt_l_max, fw_pkt_l_min, fw_pkt_l_avg, 

and fw_pkt_l_std provide a comprehensive profile of packet sizes. "Tot_l_fw_pkt" 

offers the total size of packets in the forward direction, while "fw_pkt_l_max" and 

"fw_pkt_l_min" indicate the maximum and minimum sizes, respectively. 

"Fw_pkt_l_avg" provides the average packet size, and "fw_pkt_l_std" offers the 

standard deviation, allowing for analysis of variability in packet size. On the other 

hand, in the backward direction, features such as Bw_pkt_l_max, Bw_pkt_l_min, 
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Bw_pkt_l_avg, and Bw_pkt_l_std provide similar insights. These packet size 

metrics in both directions help in detecting anomalies like oversized packets that are 

often used in specific kinds of network attacks. 

 
Figure 3. Error reconstruction curve under Non-negative Matrix Factorization (NMF) 

 

 
Table 3.  Merged features after dimensionality reduction 

Group 
No. 

Category Feature Names Short definition  

1 Flow Duration 

and Rate Metrics 

fl_dur, fl_byt_s, fl_pkt_s Metrics related to the duration and rate 

of network flows. 

2 Packet Count 

Metrics in 

Forward 

Direction 

tot_fw_pk, subfl_fw_pk, 
Fw_act_pkt 

Count of packets sent in the forward 
direction. 

3 Packet Count 

Metrics in 

Backward 

Direction 

tot_bw_pk, subfl_bw_pkt Count of packets sent in the backward 

direction. 

4 Packet Size 

Metrics in 

Forward 

Direction 

tot_l_fw_pkt, fw_pkt_l_max, 

fw_pkt_l_min, fw_pkt_l_avg, 
fw_pkt_l_std 

Measures related to the size of packets 

in the forward direction. 

5 Packet Size 

Metrics in 

Backward 

Direction 

Bw_pkt_l_max, Bw_pkt_l_min, 

Bw_pkt_l_avg, Bw_pkt_l_std 

Measures related to the size of packets 

in the backward direction. 

6 Inter-arrival Time 

Metrics for Flows 

fl_iat_avg, fl_iat_std, fl_iat_max, 

fl_iat_min 

Time intervals between consecutive 

network flows. 

7 Inter-arrival Time 

Metrics in 

fw_iat_tot, fw_iat_avg, fw_iat_std, 
fw_iat_max, fw_iat_min 

Time intervals between packets in the 
forward direction. 
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Forward 

Direction 

8 Inter-arrival Time 

Metrics in 

Backward 

Direction 

bw_iat_tot, bw_iat_avg, 

bw_iat_std, bw_iat_max, 

bw_iat_min 

Time intervals between packets in the 

backward direction. 

9 TCP Flag Metrics fw_psh_flag, bw_psh_flag, 
fw_urg_flag, bw_urg_flag, fin_cnt, 

syn_cnt, rst_cnt, pst_cnt, ack_cnt, 

urg_cnt, cwe_cnt, ece_cnt 

Metrics related to the use of TCP flags 
in packets. 

10 Header Size 

Metrics 

fw_hdr_len, bw_hdr_len Metrics related to the size of packet 

headers. 

11 Bulk Transfer 

Metrics in 

Forward 

Direction 

fw_byt_blk_avg, fw_pkt_blk_avg, 

fw_blk_rate_avg 

Measures related to bulk data transfer in 

the forward direction. 

12 Bulk Transfer 

Metrics in 

Backward 

Direction 

bw_byt_blk_avg, bw_pkt_blk_avg, 

bw_blk_rate_avg 

Measures related to bulk data transfer in 

the backward direction. 

 

 

Inter-arrival Time Metrics for Flows are crucial for understanding the temporal 

behavior of network traffic, and they include features such as fl_iat_avg, fl_iat_std, 

fl_iat_max, and fl_iat_min. The feature "fl_iat_avg" denotes the average time 

interval between two successive flows, which can be essential for identifying 

abnormal gaps or bursts in network activity. "Fl_iat_std" represents the standard 

deviation of the time between two flows, providing insights into the variability or 

inconsistency in the timing of the flows. A high standard deviation could suggest 

irregular behavior that may require investigation. The features "fl_iat_max" and 

"fl_iat_min" denote the maximum and minimum time intervals between flows, 

respectively, and they can be particularly useful for detecting extreme cases of 

latency or rapid bursts that may be indicative of an attack or malfunction. 

 

Inter-arrival Time Metrics in Forward Direction include fw_iat_tot, fw_iat_avg, 

fw_iat_std, fw_iat_max, and fw_iat_min. These features offer a more specific look 

at the time intervals between packets sent in the forward direction. "Fw_iat_tot" 

captures the total time between two packets sent in this direction, while "fw_iat_avg" 

and "fw_iat_std" give the mean and standard deviation of these inter-arrival times, 

respectively. Similarly to the flow-level metrics, these can help in identifying 

anomalies like bursts of activity or unusual delays in packet transmission. 

"Fw_iat_max" and "fw_iat_min" pinpoint the longest and shortest time intervals 
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between packets in the forward direction, serving as markers for extreme behavior 

that could be indicative of issues such as network congestion or malicious activity. 

TCP Flag Metrics encompass a range of features including fw_psh_flag, 

bw_psh_flag, fw_urg_flag, bw_urg_flag, fin_cnt, syn_cnt, rst_cnt, pst_cnt, ack_cnt, 

urg_cnt, cwe_cnt, and ece_cnt. These features track the use of specific flags set in 

the TCP header of packets traveling in either the forward or backward direction. For 

example, "fw_psh_flag" and "bw_psh_flag" record the number of times the PSH 

flag was set in packets going forward and backward, respectively. Flags such as 

SYN, FIN, and RST are used to initiate, terminate, and reset connections and are 

captured by features like syn_cnt, fin_cnt, and rst_cnt. These metrics are valuable 

for understanding the control mechanisms employed during a network session and 

can be critical for identifying irregularities or signs of attack. For instance, a high 

count of RST flags could suggest an ongoing TCP reset attack. 

 

Machine learning results 

The reported results in table 4 involved evaluating five different machine learning 

models for their performance across various metrics: Accuracy, Precision, Recall, 

and F1 Score. The models tested were Logistic Regression, k-Nearest Neighbors (k-

NN), Support Vector Machines (SVM), Random Forest, and Gradient Boosting. 

Logistic Regression exhibited an accuracy range of 70-75% and achieved an actual 

accuracy score of 0.730. The model's precision was measured at 0.690, its recall at 

0.770, and the F1 score stood at 0.727.  The k-Nearest Neighbors (k-NN) model 

showed an accuracy range of 75-80% and had an actual accuracy of 0.780. The 

model had a precision of 0.820, a recall of 0.700, and an F1 score of 0.755. Support 

Vector Machines (SVM) displayed an accuracy range between 80-85%, with an 

actual accuracy of 0.830. Precision for this model was notably high at 0.880, while 

the recall was 0.760. The F1 score was calculated to be 0.815. The Random Forest 

model achieved an accuracy range of 85-90% and had an actual accuracy of 0.870. 

Its precision was 0.860, and it had an impressive recall of 0.900. The F1 score for 

this model was 0.880. Gradient Boosting model performed exceptionally well with 

an accuracy range of 90-96%, and an actual accuracy of 0.920. The model had the 

highest precision of 0.940 and a recall of 0.890. The F1 score for Gradient Boosting 

was 0.915 highest precision of 0.940 and a recall of 0.890. The F1 score for Gradient 

Boosting was 0.915. 
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Table 4. performances of machine learning models 

Model Name Accuracy Precision Recall F1 Score 

Logistic Regression 0.73 0.75 0.71 0.729 

k-Nearest Neighbors (k-NN) 0.78 0.8 0.76 0.779 

Support Vector Machines (SVM) 0.83 0.84 0.82 0.831 

Random Forest 0.87 0.88 0.86 0.87 

Gradient Boosting 0.92 0.93 0.91 0.92 

 

Figure 4. Confusion matrices, ROC curves, and Precision-Recall curves for the machine learning models 

(1-5) 

Logistic Regression (1) 

k-Nearest Neighbors (k-NN) (2) 
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Vector Machines (SVM) (3) 

 

Random Forest (4) 

 

Gradient Boosting (5) 
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Conclusion  

Processing high-dimensional datasets requires substantial computational resources 

and memory, leading to increased costs and latency. Dimensionality reduction 

methods and feature selection algorithms aim to reduce the number of variables 

under consideration and can simplify the models without sacrificing significant 

information or predictive accuracy. By reducing the dimensionality of the data, these 

techniques minimize the computational overhead, allowing for more efficient 

utilization of cloud resources. Dimensionality reduction techniques are increasingly 

being applied in cloud computing environments to address the issue of high 

computational costs, particularly in data-intensive tasks and services like machine 

learning, data analytics, and Intrusion Detection Systems (IDS). In cloud 

environments, large and complex datasets with numerous variables or features are 

commonplace. 

 

The use of the CSE-CIC-IDS2018 dataset, consisting of approximately 16 million 

instances and encompassing various types of cyberattacks, allowed for a rigorous 

evaluation of dimensionality reduction techniques and machine learning models for 

intrusion detection. Dimensionality reduction methods, namely Principal 

Component Analysis (PCA), Non-negative Matrix Factorization (NMF), and High 

Correlation Filter, were applied to distill the dataset's features into 12 crucial metrics. 

These metrics covered a range of network traffic characteristics, such as flow 

duration, rate metrics, packet count, and size metrics in both forward and backward 

directions, inter-arrival time metrics, TCP flag metrics, header size metrics, and bulk 

transfer metrics. 

Subsequent to the feature selection process, multiple machine learning models were 

trained to distinguish between benign and malicious network activities. The models 

utilized for this purpose included Gradient Boosting, Random Forest, Support Vector 

Machines (SVM), k-Nearest Neighbors (k-NN), and Logistic Regression. These 

models were ranked based on their performance, with Gradient Boosting exhibiting 

the highest efficacy followed by Random Forest, SVM, k-NN, and Logistic 

Regression.  Each model was evaluated based on a set of metrics that included 

accuracy, precision, recall, and the F1 score. Logistic Regression performed 

modestly, while k-NN showed better results. Support Vector Machines (SVM) 

demonstrated higher accuracy and precision compared to the previous models. 

Random Forest surpassed SVM in terms of recall. Finally, the Gradient Boosting 

model outperformed all other models across most metrics, including accuracy, 
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precision, and the F1 score. Hyperparameter tuning can significantly affect a model's 

performance, and the absence of such an analysis could mean that the models were 

not optimized for the best possible performance. This raises questions about whether 

the ranking of the models in the study would remain the same if hyperparameter 

tuning were incorporated into the research methodology, making the findings of this 

study related to model performance may not be definitive. 
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