

International Journal of Information and Cybersecurity

62 | P a g e

Dimensionality Reduction Based Intrusion Detection System in

Cloud Computing Environment Using Machine Learning

Raghava Satya SaiKrishna Dittakavi
Independent Researcher

Abstract
The rapid expansion of cloud computing has been tempered by concerns surrounding privacy

and security. To tackle these issues, intrusion detection systems with machine learning

techniques are increasingly being deployed in cloud environment. However, computational

cost and model complexity remain major challenges. To this end, the present study proposed

a dimensionality-reduction based IDS for cloud computing environments to minimize

computational costs in cloud environment. Using the CSE-CIC-IDS2018 dataset, which

comprises about 16 million instances and covers a broad array of attack types, we applied

dimensionality reduction methods Principal Component Analysis (PCA), Non-negative

Matrix Factorization (NMF), and High Correlation Filter. The resulting feature set was

narrowed down to 12 essential features, which include flow duration and rate metrics, packet

count and size metrics in both forward and backward directions, inter-arrival time metrics

for flows in both directions, TCP flag metrics, header size metrics, and bulk transfer metrics

in both forward and backward directions. Machine learning models were then trained to

classify instances as either benign or attack-oriented. The models employed for classification

were Gradient Boosting, Random Forest, Support Vector Machines (SVM), k-Nearest

Neighbors (k-NN), and Logistic Regression, listed in order of performance. This research

argued that dimensionality reduction not only simplifies the machine learning models but

also reduces computational costs and the risk of overfitting, thereby improving the cost and

computational efficiency and reliability of intrusion detection systems in cloud computing.

Keywords: Cloud Computing, Intrusion Detection System, CICIDS2018, Dimensionality

Reduction, Machine Learning

International Journal of Information and Cybersecurity

63 | P a g e

Introduction

In recent years, the adoption of cloud-based services has become increasingly

prevalent among modern enterprises. This transition allows organizations to focus

more on their core business activities by outsourcing the management of IT-related

tasks to third-party vendors. While cloud providers generally adhere to industry best

practices to maintain the security of their infrastructure, the onus of safeguarding

data and applications often remains with the enterprise (1, 2). It is crucial for

organizations to understand that migrating to the cloud does not absolve them of

their responsibilities concerning data asset security and accountability. Measures

such as encryption, access control, and regular auditing are essential to protect

sensitive data. Moreover, coordination between internal security teams and cloud

service providers is vital to establish a secure environment, especially in hybrid or

multi-cloud deployments (3, 4).

The risks associated with inadequate cloud security have been exacerbated by the

increasing sophistication of cyber threats. Cloud computing environments have

become prime targets for attackers, partly because organizations often lack visibility

and control over data access and movement within the cloud. Advanced threats, such

as data breaches, ransomware, and insider attacks, can exploit vulnerabilities in the

cloud infrastructure or applications. Failure to implement robust security protocols

can result in significant governance and compliance risks, especially when handling

sensitive client information (5, 6).

Intrusion detection focuses on the accurate identification of potential threats that

could damage or compromise an information system. The primary objective of an

intrusion detection system (IDS) is to promptly detect and alert administrators about

any malicious activities, ensuring that timely countermeasures can be taken to

safeguard the integrity of the system. Such systems are designed to recognize a wide

range of attacks, thereby ensuring the protection of valuable data and preserving the

functionality of the system (7, 8).

An IDS can be categorized based on where it is deployed and the type of data it

analyzes. A host-based IDS, for example, is primarily concerned with the internal

monitoring of a specific computer or system. It operates by examining the activities

within the system it is installed on. Some of the primary tasks performed by a host-

based IDS include monitoring changes to the Windows registry, analyzing logs for

suspicious activities, and checking the integrity of files. This type of system provides

an in-depth view of what is happening inside the host, offering a line of defense

against threats that may originate from within the system (9).

International Journal of Information and Cybersecurity

64 | P a g e

On the other hand, a network-based IDS operates by monitoring and analyzing

network traffic. It looks for patterns or signatures that might indicate malicious

activities. This type of system is especially important for detecting threats that aim

to exploit vulnerabilities in the network or disrupt its operations. Examples of threats

that a network-based IDS might detect include Denial-of-Service (DoS) attacks,

SQL injection attacks, and password attacks (10, 11).

Intrusion Detection Systems (IDS) are primarily classified into two categories based

on their detection methodologies: signature-based and anomaly-based. The

signature-based IDS operates by relying on a predefined database of known attack

patterns or signatures. These patterns are derived from previously identified and

analyzed malicious activities. When incoming traffic matches any of these known

patterns, the IDS triggers an alert, indicating a potential intrusion. However, one of

the major limitations of signature-based IDS is its inability to detect novel or

previously unknown attacks (12, 13). Because of this limitation, the database

containing attack signatures must be incessantly updated. This constant need for

updates ensures that the system remains effective against the latest threats but can

also be resource-intensive and requires vigilant monitoring to ensure that the system

is always equipped with the most recent attack signatures.

In contrast to the signature-based approach, anomaly-based IDS operates by

establishing a baseline of what is considered "normal" behavior within a system or

network. This baseline is derived from a comprehensive analysis of regular and

benign traffic patterns over a specific period. Once this standard behavior is

established, the anomaly-based IDS continuously monitors the system or network

for any deviations from this baseline (14, 15). Such deviations, which could be

sudden spikes in traffic, unusual access patterns, or any other irregularities, are

flagged as potential threats. What sets anomaly-based IDS apart is its inherent ability

to detect previously unknown attacks or zero-day vulnerabilities, as it does not rely

on known patterns but rather on behavioral deviations.

Intrusion Detection Systems (IDS) in a cloud computing environment serve as a

critical layer of security to monitor, detect, and flag malicious activities or policy

violations. The architecture and deployment of IDS in the cloud differ from those in

traditional network settings due to the inherent complexities and unique

characteristics of cloud environments, such as virtualization, resource pooling, and

elasticity. For instance, in cloud infrastructures, IDS can be deployed at different

levels, such as host-based, network-based, or hypervisor-based, to monitor different

types of data, from network packets to system calls and logs. Host-based IDS may

International Journal of Information and Cybersecurity

65 | P a g e

be installed on each virtual machine, while network-based IDS monitor traffic

between virtual machines and external networks (16, 17). Hypervisor-based IDS

operate at the hypervisor level to oversee activities across multiple virtual machines.

Reducing computational costs in Intrusion Detection Systems (IDS) deployed in

cloud computing environments is of significant importance for several reasons.

Cloud computing is fundamentally based on the model of resource sharing and

virtualization, where resources like processing power, memory, and storage are

allocated dynamically. High computational costs for running IDS could lead to

inefficient use of these shared resources, thereby affecting not only the IDS but also

other services and applications running on the cloud. If IDS consumes excessive

resources, there may be less availability for other tasks, which could result in service

degradation or increased operational costs. Efficient resource utilization is especially

critical in cloud environments that scale dynamically according to demand, as an

IDS with high computational costs could impede this scalability (18).

The economic aspect cannot be ignored. Implementing an IDS with high

computational requirements would necessitate more powerful hardware or

additional instances, thereby increasing the overall cost of operation. This negates

some of the cost benefits associated with cloud computing. Additionally, cloud

service providers often charge based on resource usage; hence, an IDS that uses

excessive computational resources could lead to increased operational expenses for

the end-users. In a competitive market, where businesses are highly cost-sensitive,

such additional costs could be detrimental to the adoption of cloud services.

High-dimensional data, consisting of various attributes and features of network

packets, can slow down the IDS, leading to delayed responses and potential security

risks. Implementing dimensionality reduction techniques can expedite the detection

process by reducing the computational burden on the system, enabling quicker and

more effective responses to potential threats. This not only enhances security but

also allows for better allocation of cloud resources, which could otherwise be wasted

on unnecessary computations.

Experimental methods

Figure 1. depicts the proposed model where CICIDS2018 dataset(19) is initially

collected. The data undergoes preprocessing steps like cleaning and transformation.

For dimensionality reduction, three technique s—PCA, NMF, and High Correlation

Filter—are applied. The selected features are then used for training and testing a

classification model to differentiate between benign and attack targets. The

International Journal of Information and Cybersecurity

66 | P a g e

evaluation metrics include accuracy, precision, recall, and F1-score, which are

calculated based on the classification results.

Figure 1. Proposed IDS in cloud computing environment with dimensionality reduction

International Journal of Information and Cybersecurity

67 | P a g e

Dimensionality reduction

High-dimensional data is often burdensome in terms of storage, computation, and

network transfer. For example, machine learning models trained on high-

dimensional data may require significantly more computational resources for

training and inference (20, 21). This increased requirement can lead to slower

processing times and higher resource allocation, subsequently driving up the

operational costs in a cloud environment where resources are billed based on usage.

In cloud-based data analytics or real-time monitoring systems like IDS, high-

dimensional data can also lead to challenges in scalability and real-time processing.

Handling a large number of features in real-time analytics could result in latency and

decrease the system’s ability to scale dynamically according to demand. When

dimensionality reduction techniques such as Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), or feature selection methods are applied, the

essential characteristics of the data are retained while reducing the number of

features. This reduced dataset is more manageable computationally, allowing for

quicker data processing, less storage space, and ultimately, cost savings. The reduced

computational burden enables the cloud environment to allocate resources more

efficiently, thereby allowing for better scalability and potentially lowering the costs

for both the service provider and the end-users.

Principal Component Analysis (PCA)

PCA is used to transform the original variables into a new set of variables known as

principal components, which are orthogonal to each other, and reflect the maximum

variance in the data (22). The first principal component reflects the most variance,

the second (which is orthogonal to the first) reflects the second most, and so on.

Mathematically, given a data matrix (𝐗) of dimensions (𝐧 × 𝐩) where, (n), is the

number of observations and p is the number of variables), PCA seeks to find a set of

(𝒑) orthogonal vectors (𝒖𝟏, 𝒖𝟐, … , 𝒖𝒑) that maximize the following:

[Var(𝑿𝒖) = 𝒖𝑻𝜮𝒖]

Subject to:

[𝒖𝑻𝒖 = 𝟏]

Where (Σ) is the covariance matrix of (𝑋)

International Journal of Information and Cybersecurity

68 | P a g e

Non-negative Matrix Factorization (NMF)

NMF is used to factorize a non-negative matrix (V) into two lower-dimensional

non-negative matrices (𝑾) and (𝑯), such that (𝑽 ≈ 𝑾 × 𝑯). Given a matrix

(V) of dimensions (n × m), NMF aims to find matrices (W) of dimensions

(𝒏 × 𝒌) 𝒂𝒏𝒅 (𝑯) of dimensions (𝒌 × 𝒎), where (𝒌) is much smaller than

(𝒏) 𝒂𝒏𝒅 (𝒎), to approximate (𝑽). The objective function to minimize is often:

[|𝑽 − 𝑾𝑯|𝑭
𝟐]

Where (| ⋅ |𝐅) is the Frobenius norm.

High Correlation Filter

The High Correlation Filter is a feature selection method that removes features that

are highly correlated with each other, retaining only one feature from each set of

correlated features. Given a set of features (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑), this method computes

the correlation matrix (𝑹), where the element (𝒓𝒊𝒋) represents the correlation

between (𝑿𝒊)𝒂𝒏𝒅(𝑿𝒋). Features are filtered out based on a threshold (𝒕), such that

if (|𝒓𝒊𝒋| > 𝒕), one of (𝑿𝒊)𝒐𝒓(𝑿𝒋) is removed.

Machine Learning models

Gradient Boosting is a machine learning technique used for classification and

regression tasks, among other predictive modeling applications. It builds on the idea

of combining weak predictors to create a strong predictor by focusing on the

mistakes made by previous predictors in the ensemble. The algorithm iteratively

adds trees that correct the residuals—differences between observed and predicted

values—of the existing ensemble. A shrinkage parameter, often referred to as the

learning rate, controls the influence of each new tree. By emphasizing instances that

were previously misclassified, Gradient Boosting adapts to the weaknesses of the

overall model.

Random Forest is another ensemble learning method that performs well for both

classification and regression tasks. Unlike Gradient Boosting, which is sequential,

Random Forest constructs multiple decision trees during training and outputs the

mode or mean prediction of the individual trees for classification or regression,

respectively. Random Forest introduces randomness by selecting a subset of features

at each split while growing a tree and by bootstrapping samples for each tree. This

results in a set of diverse decision trees that collectively deliver a more robust and

stable prediction. The algorithm is computationally efficient and less prone to

International Journal of Information and Cybersecurity

69 | P a g e

overfitting, as the averaging of multiple trees mitigates the risk of capturing noise in

the training data.

Support Vector Machines (SVM) are designed for binary classification tasks, though

extensions for multi-class classification and regression do exist. The core idea

behind SVM is to find the hyperplane that maximally separates two classes of data

points in the feature space. For data that is not linearly separable, SVM uses kernel

functions to map the data to a higher-dimensional space where it can be linearly

separated. Margin maximization ensures that the decision boundary maximizes the

distance between the closest data points from different classes, enhancing the

generalization capability of the model. One of the limitations of SVM is its

sensitivity to the choice of the kernel and regularization parameters.

The k-Nearest Neighbors (k-NN) algorithm is a type of instance-based learning that

can be used for both classification and regression. It works by comparing a test

sample with k training samples that are closest in the feature space. The output is

determined by a majority vote for classification tasks or by an average for regression

tasks. Distance metrics, such as Euclidean distance, are typically used to identify the

nearest neighbors. The algorithm is simple to implement and understand but can be

computationally intensive during the prediction phase, particularly when dealing

with large data sets. Additionally, the choice of k and the distance metric can

significantly affect the algorithm's performance.

Logistic Regression, despite its name, is primarily used for binary classification

problems. The algorithm models the probability that the target variable belongs to a

particular category, typically by using the logistic function to transform a linear

combination of the input features. The coefficients for the features are generally

estimated through maximum likelihood estimation. Unlike more complex

algorithms like Gradient Boosting and Random Forest, Logistic Regression provides

a less flexible but more interpretable model, offering insights into the importance of

individual features. The algorithm assumes that there is a linear relationship between

the log-odds of the output and the input features, which may not hold true for all

data sets.

Dataset

The CSE-CIC-IDS2018 dataset was developed by the Canadian Institute for

Cybersecurity (CIC) (19) in collaboration with the Communications Security

International Journal of Information and Cybersecurity

70 | P a g e

Establishment (CSE) to address limitations in existing datasets, particularly their

inability to represent modern network traffic patterns and attack methods. The

dataset is an extensive collection of labeled network traffic records, generated by

simulating a real-world organizational network environment. The data incorporates

various types of attacks including Brute Force, DoS, Heartbleed, Web Attack,

Infiltration, and Botnet, among others, in addition to benign network traffic. One of

the most distinctive features of the CSE-CIC-IDS2018 dataset is its extensive feature

set, comprising of 80 network traffic attributes, which enhances its suitability for

complex analysis tasks (23).

The CSE-CIC-IDS2018 dataset is often compared with other benchmark datasets in

the field of intrusion detection, such as KDD Cup 1999, NSL-KDD, and ISCX 2012.

Table 1 provides a comparison among the benchmark datasets for IDS (24).

Table 1. intrusion detection benchmark datasets

Dataset Feature Limitations Notable Features

CSE-CIC-

IDS2018

Broad array of modern

attack types, extensive

feature set, high volume

of data.

Class imbalance. Suitable for training complex

machine learning models,

detailed environment for

research.

KDD Cup

1999

Historically important

for initial studies.

Outdated, lacks

diversity in attack

types.

No longer highly relevant due

to evolving cyber-attacks.

NSL-KDD Improvement over KDD

Cup 1999, reduced

redundant records.

Still lacks diversity

in attack types.

Addresses some limitations of

KDD Cup 1999.

ISCX 2012 Includes contemporary

attack types, focus on

realistic network

environment.

Class imbalance,

less extensive

feature set than

CSE-CIC-

IDS2018.

Similar to CSE-CIC-IDS2018

but with fewer features and

lower data volume.

Designed to be comprehensive in terms of network traffic patterns and intrusion

scenarios, the CSE-CIC-IDS2018 dataset aids in evaluating the performance of

various intrusion detection models. It is formulated to be compatible with machine

learning methodologies, offering a testing environment for data preprocessing

techniques, feature selection methods, and algorithmic model evaluations. CSE-

CIC-IDS2018 dataset provides a more up-to-date and detailed environment

compared to other benchmark dataset for intrusion detection system.

International Journal of Information and Cybersecurity

71 | P a g e

Table 2. Types of Attacks in CSE-CIC-IDS2018

Attack Type Description

Brute Force Unauthorized user tries to gain access by guessing passwords or exploiting

vulnerabilities.

DoS/DDoS Aim to overwhelm a network or service with excessive data to make it

unavailable.

Web Attacks Includes SQL Injection, Cross-Site Scripting (XSS), and other attacks

targeting web applications.

Infiltration Unauthorized user gains access to a network without detection.

Botnet A network of compromised computers controlled by an attacker for tasks like

spamming or data theft.

Port Scanning Scanning a network to find open ports for exploitation.

Packet Sniffing Intercepting and logging network traffic, usually to glean sensitive

information.

Man-in-the-Middle Interception of communications between two parties to steal or manipulate

data.

Dimensionality reduction Results

The lower eigenvalue (the red line) in figure 2 at the 12th component suggests that

one would most likely keep the first 12 components for subsequent steps in data

analysis, as the eigenvalues after this point do not contribute significantly to

explaining the variance in the data.

In Figure 3, the reconstruction error is plotted against the number of components,

ranging from 1 to 17. The reconstruction error starts at 120 when there is only one

component and generally decreases as more components are added. The purpose of

such a plot is to help determine the optimal number of components for NMF by

identifying a point where adding more components does not significantly reduce the

reconstruction error. In this research, one might consider that the reconstruction error

starts to stabilize around 12 to 13 components, as the error values become less

variable and decline more slowly after that point.

Flow Duration and Rate Metrics comprise features such as flow duration (fl_dur),

flow byte rate (fl_byt_s), and flow packet rate (fl_pkt_s). These metrics are essential

for characterizing the temporal behavior of network flows. Flow duration is the

length of time for which a flow exists, and it can offer critical insights into whether

a flow is short-lived (possibly indicative of a scan or attack) or long-lived (more

likely to be a legitimate user session). Flow byte rate and flow packet rate represent

the rate at which bytes and packets are being transferred over the network,

respectively. A sudden spike in these rates could indicate data exfiltration, flooding

International Journal of Information and Cybersecurity

72 | P a g e

attacks, or other abnormal activities, while consistently low rates might suggest an

idle or less active session. Monitoring these metrics allows security administrators

to set baseline patterns and thereby identify anomalies in network traffic.

Packet Count Metrics in Forward Direction include total packets in the forward

direction (tot_fw_pk), average number of packets in a sub-flow in the forward

direction (subfl_fw_pk), and the number of packets with at least one byte of TCP

data payload in the forward direction (Fw_act_pkt). These features can serve as

indicators of the nature and quantity of outgoing traffic.

Figure 2. Scree plot under Principal Component Analysis (PCA)

A high total packet count in the forward direction could imply either large data

transfers or potential flooding attacks, depending on the context. On the other hand,

metrics like the average number of packets in a sub-flow and the number of packets

with payload data could provide more granular insights into the types of data being

sent. For instance, a high count of packets with payload could suggest legitimate

data transfer, while an absence might raise suspicions of covert channel

communication or scanning activities.

Packet Size Metrics in Forward Direction and Backward Direction consist of a

variety of features that measure different aspects of packet size. In the forward

direction, features like tot_l_fw_pkt, fw_pkt_l_max, fw_pkt_l_min, fw_pkt_l_avg,

and fw_pkt_l_std provide a comprehensive profile of packet sizes. "Tot_l_fw_pkt"

offers the total size of packets in the forward direction, while "fw_pkt_l_max" and

"fw_pkt_l_min" indicate the maximum and minimum sizes, respectively.

"Fw_pkt_l_avg" provides the average packet size, and "fw_pkt_l_std" offers the

standard deviation, allowing for analysis of variability in packet size. On the other

hand, in the backward direction, features such as Bw_pkt_l_max, Bw_pkt_l_min,

International Journal of Information and Cybersecurity

73 | P a g e

Bw_pkt_l_avg, and Bw_pkt_l_std provide similar insights. These packet size

metrics in both directions help in detecting anomalies like oversized packets that are

often used in specific kinds of network attacks.

Figure 3. Error reconstruction curve under Non-negative Matrix Factorization (NMF)

Table 3. Merged features after dimensionality reduction

Group
No.

Category Feature Names Short definition

1 Flow Duration

and Rate Metrics

fl_dur, fl_byt_s, fl_pkt_s Metrics related to the duration and rate

of network flows.

2 Packet Count

Metrics in

Forward

Direction

tot_fw_pk, subfl_fw_pk,
Fw_act_pkt

Count of packets sent in the forward
direction.

3 Packet Count

Metrics in

Backward

Direction

tot_bw_pk, subfl_bw_pkt Count of packets sent in the backward

direction.

4 Packet Size

Metrics in

Forward

Direction

tot_l_fw_pkt, fw_pkt_l_max,

fw_pkt_l_min, fw_pkt_l_avg,
fw_pkt_l_std

Measures related to the size of packets

in the forward direction.

5 Packet Size

Metrics in

Backward

Direction

Bw_pkt_l_max, Bw_pkt_l_min,

Bw_pkt_l_avg, Bw_pkt_l_std

Measures related to the size of packets

in the backward direction.

6 Inter-arrival Time

Metrics for Flows

fl_iat_avg, fl_iat_std, fl_iat_max,

fl_iat_min

Time intervals between consecutive

network flows.

7 Inter-arrival Time

Metrics in

fw_iat_tot, fw_iat_avg, fw_iat_std,
fw_iat_max, fw_iat_min

Time intervals between packets in the
forward direction.

International Journal of Information and Cybersecurity

74 | P a g e

Forward

Direction

8 Inter-arrival Time

Metrics in

Backward

Direction

bw_iat_tot, bw_iat_avg,

bw_iat_std, bw_iat_max,

bw_iat_min

Time intervals between packets in the

backward direction.

9 TCP Flag Metrics fw_psh_flag, bw_psh_flag,
fw_urg_flag, bw_urg_flag, fin_cnt,

syn_cnt, rst_cnt, pst_cnt, ack_cnt,

urg_cnt, cwe_cnt, ece_cnt

Metrics related to the use of TCP flags
in packets.

10 Header Size

Metrics

fw_hdr_len, bw_hdr_len Metrics related to the size of packet

headers.

11 Bulk Transfer

Metrics in

Forward

Direction

fw_byt_blk_avg, fw_pkt_blk_avg,

fw_blk_rate_avg

Measures related to bulk data transfer in

the forward direction.

12 Bulk Transfer

Metrics in

Backward

Direction

bw_byt_blk_avg, bw_pkt_blk_avg,

bw_blk_rate_avg

Measures related to bulk data transfer in

the backward direction.

Inter-arrival Time Metrics for Flows are crucial for understanding the temporal

behavior of network traffic, and they include features such as fl_iat_avg, fl_iat_std,

fl_iat_max, and fl_iat_min. The feature "fl_iat_avg" denotes the average time

interval between two successive flows, which can be essential for identifying

abnormal gaps or bursts in network activity. "Fl_iat_std" represents the standard

deviation of the time between two flows, providing insights into the variability or

inconsistency in the timing of the flows. A high standard deviation could suggest

irregular behavior that may require investigation. The features "fl_iat_max" and

"fl_iat_min" denote the maximum and minimum time intervals between flows,

respectively, and they can be particularly useful for detecting extreme cases of

latency or rapid bursts that may be indicative of an attack or malfunction.

Inter-arrival Time Metrics in Forward Direction include fw_iat_tot, fw_iat_avg,

fw_iat_std, fw_iat_max, and fw_iat_min. These features offer a more specific look

at the time intervals between packets sent in the forward direction. "Fw_iat_tot"

captures the total time between two packets sent in this direction, while "fw_iat_avg"

and "fw_iat_std" give the mean and standard deviation of these inter-arrival times,

respectively. Similarly to the flow-level metrics, these can help in identifying

anomalies like bursts of activity or unusual delays in packet transmission.

"Fw_iat_max" and "fw_iat_min" pinpoint the longest and shortest time intervals

International Journal of Information and Cybersecurity

75 | P a g e

between packets in the forward direction, serving as markers for extreme behavior

that could be indicative of issues such as network congestion or malicious activity.

TCP Flag Metrics encompass a range of features including fw_psh_flag,

bw_psh_flag, fw_urg_flag, bw_urg_flag, fin_cnt, syn_cnt, rst_cnt, pst_cnt, ack_cnt,

urg_cnt, cwe_cnt, and ece_cnt. These features track the use of specific flags set in

the TCP header of packets traveling in either the forward or backward direction. For

example, "fw_psh_flag" and "bw_psh_flag" record the number of times the PSH

flag was set in packets going forward and backward, respectively. Flags such as

SYN, FIN, and RST are used to initiate, terminate, and reset connections and are

captured by features like syn_cnt, fin_cnt, and rst_cnt. These metrics are valuable

for understanding the control mechanisms employed during a network session and

can be critical for identifying irregularities or signs of attack. For instance, a high

count of RST flags could suggest an ongoing TCP reset attack.

Machine learning results

The reported results in table 4 involved evaluating five different machine learning

models for their performance across various metrics: Accuracy, Precision, Recall,

and F1 Score. The models tested were Logistic Regression, k-Nearest Neighbors (k-

NN), Support Vector Machines (SVM), Random Forest, and Gradient Boosting.

Logistic Regression exhibited an accuracy range of 70-75% and achieved an actual

accuracy score of 0.730. The model's precision was measured at 0.690, its recall at

0.770, and the F1 score stood at 0.727. The k-Nearest Neighbors (k-NN) model

showed an accuracy range of 75-80% and had an actual accuracy of 0.780. The

model had a precision of 0.820, a recall of 0.700, and an F1 score of 0.755. Support

Vector Machines (SVM) displayed an accuracy range between 80-85%, with an

actual accuracy of 0.830. Precision for this model was notably high at 0.880, while

the recall was 0.760. The F1 score was calculated to be 0.815. The Random Forest

model achieved an accuracy range of 85-90% and had an actual accuracy of 0.870.

Its precision was 0.860, and it had an impressive recall of 0.900. The F1 score for

this model was 0.880. Gradient Boosting model performed exceptionally well with

an accuracy range of 90-96%, and an actual accuracy of 0.920. The model had the

highest precision of 0.940 and a recall of 0.890. The F1 score for Gradient Boosting

was 0.915 highest precision of 0.940 and a recall of 0.890. The F1 score for Gradient

Boosting was 0.915.

International Journal of Information and Cybersecurity

76 | P a g e

Table 4. performances of machine learning models

Model Name Accuracy Precision Recall F1 Score

Logistic Regression 0.73 0.75 0.71 0.729

k-Nearest Neighbors (k-NN) 0.78 0.8 0.76 0.779

Support Vector Machines (SVM) 0.83 0.84 0.82 0.831

Random Forest 0.87 0.88 0.86 0.87

Gradient Boosting 0.92 0.93 0.91 0.92

Figure 4. Confusion matrices, ROC curves, and Precision-Recall curves for the machine learning models

(1-5)

Logistic Regression (1)

k-Nearest Neighbors (k-NN) (2)

International Journal of Information and Cybersecurity

77 | P a g e

Vector Machines (SVM) (3)

Random Forest (4)

Gradient Boosting (5)

International Journal of Information and Cybersecurity

78 | P a g e

Conclusion

Processing high-dimensional datasets requires substantial computational resources

and memory, leading to increased costs and latency. Dimensionality reduction

methods and feature selection algorithms aim to reduce the number of variables

under consideration and can simplify the models without sacrificing significant

information or predictive accuracy. By reducing the dimensionality of the data, these

techniques minimize the computational overhead, allowing for more efficient

utilization of cloud resources. Dimensionality reduction techniques are increasingly

being applied in cloud computing environments to address the issue of high

computational costs, particularly in data-intensive tasks and services like machine

learning, data analytics, and Intrusion Detection Systems (IDS). In cloud

environments, large and complex datasets with numerous variables or features are

commonplace.

The use of the CSE-CIC-IDS2018 dataset, consisting of approximately 16 million

instances and encompassing various types of cyberattacks, allowed for a rigorous

evaluation of dimensionality reduction techniques and machine learning models for

intrusion detection. Dimensionality reduction methods, namely Principal

Component Analysis (PCA), Non-negative Matrix Factorization (NMF), and High

Correlation Filter, were applied to distill the dataset's features into 12 crucial metrics.

These metrics covered a range of network traffic characteristics, such as flow

duration, rate metrics, packet count, and size metrics in both forward and backward

directions, inter-arrival time metrics, TCP flag metrics, header size metrics, and bulk

transfer metrics.

Subsequent to the feature selection process, multiple machine learning models were

trained to distinguish between benign and malicious network activities. The models

utilized for this purpose included Gradient Boosting, Random Forest, Support Vector

Machines (SVM), k-Nearest Neighbors (k-NN), and Logistic Regression. These

models were ranked based on their performance, with Gradient Boosting exhibiting

the highest efficacy followed by Random Forest, SVM, k-NN, and Logistic

Regression. Each model was evaluated based on a set of metrics that included

accuracy, precision, recall, and the F1 score. Logistic Regression performed

modestly, while k-NN showed better results. Support Vector Machines (SVM)

demonstrated higher accuracy and precision compared to the previous models.

Random Forest surpassed SVM in terms of recall. Finally, the Gradient Boosting

model outperformed all other models across most metrics, including accuracy,

International Journal of Information and Cybersecurity

79 | P a g e

precision, and the F1 score. Hyperparameter tuning can significantly affect a model's

performance, and the absence of such an analysis could mean that the models were

not optimized for the best possible performance. This raises questions about whether

the ranking of the models in the study would remain the same if hyperparameter

tuning were incorporated into the research methodology, making the findings of this

study related to model performance may not be definitive.

References

1. S. Basu, A. Bardhan, K. Gupta, P. Saha, Cloud computing security challenges

& solutions-A survey. 2018 IEEE 8th (2018) (available at

https://ieeexplore.ieee.org/abstract/document/8301700/).

2. C. Kaleeswari, P. Maheswari, A brief review on cloud security scenarios.

Journal of Scientific … (2018) (available at

https://www.researchgate.net/profile/Kaleeswari-

Chinna/publication/338739148_A_Brief_Review_on_Cloud_Security_Scenar

ios/links/5e27e800299bf15216733e00/A-Brief-Review-on-Cloud-Security-

Scenarios.pdf).

3. S. Sengupta, V. Kaulgud, Cloud computing security--trends and research

directions. 2011 IEEE World (2011) (available at

https://ieeexplore.ieee.org/abstract/document/6012787/).

4. M. Rajesh, A systematic review of cloud security challenges in higher

education (2017), (available at

https://www.tojdel.net/journals/tojdel/articles/v05i04/v05i04-01.pdf).

5. Y. Al-Issa, M. A. Ottom, A. Tamrawi, eHealth Cloud Security Challenges: A

Survey. J. Healthc. Eng. 2019, 7516035 (2019).

6. V. Singh, S. K. Pandey, "A comparative study of cloud security ontologies" in

Proceedings of 3rd International Conference on Reliability, Infocom

Technologies and Optimization (IEEE, 2014), pp. 1–6.

7. L. F. B. Soares, D. A. B. Fernandes, J. V. Gomes, M. M. Freire, P. R. M.

Inácio, "Cloud Security: State of the Art" in Security, Privacy and Trust in

Cloud Systems, S. Nepal, M. Pathan, Eds. (Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014), pp. 3–44.

International Journal of Information and Cybersecurity

80 | P a g e

8. S. N. Kumar, A. Vajpayee, A survey on secure cloud: security and privacy in

cloud computing. American Journal of Systems and Software. 4, 14–26

(2016).

9. S. Iqbal, M. L. Mat Kiah, B. Dhaghighi, M. Hussain, S. Khan, M. K. Khan,

K.-K. Raymond Choo, On cloud security attacks: A taxonomy and intrusion

detection and prevention as a service. Journal of Network and Computer

Applications. 74, 98–120 (2016).

10. N. C. Paxton, "Cloud security: a review of current issues and proposed

solutions" in 2016 IEEE 2nd International Conference on Collaboration and

Internet Computing (CIC) (IEEE, 2016), pp. 452–455.

11. R. Kumar, R. Goyal, On cloud security requirements, threats, vulnerabilities

and countermeasures: A survey. Computer Science Review. 33, 1–48 (2019).

12. S. Sridhar, S. Smys, A survey on cloud security issues and challenges with

possible measures. on inventive research in engineering and … (2016)

(available at

https://www.researchgate.net/profile/Sridhar_Sudalai/publication/304157460_

A_Survey_on_Cloud_Security_Issues_and_Challenges_with_Possible_Meas

uresA_Survey_on_Cloud_Security_Issues_and_Challenges_with_Possible_M

easures/links/5768519808aef6cdf9b40545/A-Survey-on-Cloud-Security-

Issues-and-Challenges-with-Possible-MeasuresA-Survey-on-Cloud-Security-

Issues-and-Challenges-with-Possible-Measures.pdf).

13. A. Sari, A review of anomaly detection systems in cloud networks and survey

of cloud security measures in cloud storage applications. J. Inf. Secur. 06,

142–154 (2015).

14. A. Singh, K. Chatterjee, Cloud security issues and challenges: A survey.

Journal of Network and Computer Applications. 79, 88–115 (2017).

15. A. Kumari, R. Gupta, S. Tanwar, N. Kumar, Blockchain and AI amalgamation

for energy cloud management: Challenges, solutions, and future directions. J.

Parallel Distrib. Comput. 143, 148–166 (2020).

16. W. Huang, A. Ganjali, B. H. Kim, S. Oh, D. Lie, The State of Public

Infrastructure-as-a-Service Cloud Security. ACM Comput. Surv. 47, 1–31

(2015).

International Journal of Information and Cybersecurity

81 | P a g e

17. A. B. Nassif, M. A. Talib, Q. Nasir, H. Albadani, F. M. Dakalbab, Machine

learning for cloud security: A systematic review. IEEE Access. 9, 20717–

20735 (2021).

18. J. Ryoo, S. Rizvi, W. Aiken, J. Kissell, Cloud security auditing: Challenges

and emerging approaches. IEEE Secur. Priv. 12, 68–74 (2014).

19. IDS 2018 (2018), (available at https://www.unb.ca/cic/datasets/ids-

2018.html).

20. V. S. Sumithra, S. Surendran, A review of various linear and non linear

dimensionality reduction techniques (2015), (available at

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed2fc78cf

5d7eb8233deaa9dde8f42b1e2d7f661).

21. C. Feng, S. Liu, H. Zhang, R. Guan, D. Li, F. Zhou, Y. Liang, X. Feng,

Dimension Reduction and Clustering Models for Single-Cell RNA

Sequencing Data: A Comparative Study. Int. J. Mol. Sci. 21 (2020),

doi:10.3390/ijms21062181.

22. F. Anowar, S. Sadaoui, B. Selim, Conceptual and empirical comparison of

dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE,

ISOMAP, LE, ICA, t-SNE). Computer Science Review. 40, 100378 (2021).

23. R. Jindal, A. Anwar, Emerging Trends of Recently Published Datasets for

Intrusion Detection Systems (IDS): A Survey. arXiv [cs.CR] (2021),

(available at http://arxiv.org/abs/2110.00773).

24. J. L. Leevy, T. M. Khoshgoftaar, A survey and analysis of intrusion detection

models based on CSE-CIC-IDS2018 Big Data. Journal of Big Data. 7, 1–19

(2020).

