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Abstract 
Microfluidics allows for the manipulation and analysis of minuscule amounts of 
liquid within a system that contains multiple channels, ports, and samples. Advanced 
microfluidic technology can incorporate numerous functional units onto a tiny chip 
made of glass, plastic or polymers. By combining microfluidic systems with 
artificial intelligence (AI) models, it is possible to optimize the design and testing 
processes, leading to increased automation and intelligence in experiments. The AI 
models are divided into four general categories of unsupervised learning, supervised 
learning, semi-supervised learning, and reinforcement learning. These models prove 
invaluable in discovering and optimizing chemical synthesis, which can be costly 
and time-consuming. Additionally, AI models aid in simulating the assembly of 
colloidal materials in microfluidics, speeding up the prediction of material 
characteristics necessary for designing novel materials with interesting physical or 
chemical properties. Similarly, AI algorithms can predict the behavior of multiphase 
fluids, assisting in the design of microfluidic chips for various applications. Another 
application of AI models in microfluidics involves the detection of cellular matter, 
including DNA, RNA, proteins, and other metabolites, using droplet-based 
biotechnology techniques. Machine learning techniques can be employed to segment 
and classify droplets in images for this purpose. In this review, we cover the known 
applications of AI algorithms in the design of microfluidic systems and flow 
techniques, including droplet microfluidics. In this review, we cover the known 
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applications of AI algorithms in the design of microfluidic systems and flow 
techniques, including droplet microfluidics.    
Keywords: Microfluidics, Droplet microfluidics, Artificial Intelligence, Machine 
Learning 
Introduction  

Microfluidics is a technology that deals with the precise control, 
manipulation, and detection of complex fluids on a microscopic scale. Its 
development gained rapid momentum in the early 1990s, and it now stands 
as an interdisciplinary field that blends various disciplines such as physics, 
chemistry, biology, medicine, and engineering [1-3]. The term "micro" in 
microfluidics signifies the microscale size and high accuracy of the fluid 
control, allowing for precise observation and manipulation at a micro level. 
These fluids can range from chemical solutions to huma fluidics (blood to 
gases). Microfluidics plays a vital role in the chemical and biological 
sciences, where biotechnology and microfluidic processes unfold within the 
range of microns to millimeters. By enabling the manipulation and analysis 
of minuscule fluid volumes in a multi-channel system, with capacities 
ranging from 10–9 to 10–12 liters, microfluidics presents an attractive 
concept. It allows for the downsizing of large-scale biology and facilitates the 
housing of multiple experiments on a single chip, small enough to fit in the 
palm of your hand [2-7]. 

Microfluidic techniques such as lab-on-chip and point of care diagnosis 
devices have recently been widely used in the biological and medical fields. 
These have revolutionized personalized medicine and rapid diagnosis of 
various types of diseases [7-15]. Point-of-care diagnosis means that medical 
diagnostic testing can be at or near the point of care, or at the time and place 
of patient care. By contrast, the conventional method is normally conducted 
at hospitals, thus the results from the blood samples will usually take hours, 
or even days to be obtained if the hospital is quite busy. In this case, it will be 
hard for the doctor to make an early diagnosis of diseases. Modern 
microfluidic technology can integrate hundreds or even tens of thousands of 
functional units on a few square centimeters of glass or plastic chip 
substrates. Through simple experimental designs, researchers can manipulate 
hundreds or thousands of small droplets, small bubbles or biological cells [1-
7].  
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The vast amount of data produced by microfluidics allows for detailed 
analysis. In contrast to traditional methods that heavily rely on human 
involvement, deep learning utilizes extensive data to extract important 
features [15-24]. This reduces the need for manual intervention, improving 
the performance of computer-aided tasks like classifying and predicting data 
from microfluidic systems. By combining microfluidics with deep learning-
based analysis, numerous innovative ideas for related research are being 
generated. Intelligent microfluidics has proven its capability to tackle 
challenges that are challenging or nearly impossible for traditional 
approaches, including biomedical detection without labels and identifying 
optimal conditions for specific reactions [24-30]. 

Artificial Intelligence Models  
Artificial intelligence has seen rapid growth during the last decade, 

offering statistical models capable of accurate predictions to accelerate 
research discoveries with minimal human intervention [30-51]. Machine 
learning is an approach to artificial intelligence based on a framework of 
algorithms that learn from data without requiring direct programming. 
Machine learning is a class of artificial intelligence (AI)-based methods that 
direct computers to learn rules from data and then use the experience to 
improve their performance without explicit programming. Although 
traditional machine learning has long provided strong assistance for data 
processing tasks, the emergence of deep learning methods greatly enhances 
computers’ ability in dealing with huge and complicated datasets. 
Microfluidic systems and associated AI models can provide feedback to each 
other, which is conducive to the optimization of both sides and significant for 
achieving the automation and intelligence of microfluidic systems [30-42].  

The AI algorithmic models fall into four main categories: unsupervised, 
supervised, semi-supervised, and reinforcement learning [10]. In 
unsupervised learning, the computer discovers unknown information without 
any feedback. In supervised learning, the computer is trained to recognize 
specific patterns, such as different colored images. Semi-supervised learning 
is used when it's difficult to distinguish between unsupervised and supervised 
learning. It's beneficial when both labeled and unlabeled data are available. 
Reinforcement learning involves autonomous agents learning the best actions 
through trial and error to achieve their goals. Additionally, the iterative 
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update of parameters in machine learning algorithms allows them to improve 
accuracy as they learn from more data. 

In recent years, artificial intelligence has made significant strides thanks 
to the development of artificial neural networks [10, 12-20]. These networks, 
influenced by various fields such as mathematics, physics, and neuroscience, 
mimic the behavior of biological neurons to process information. By updating 
the weight of connections between neurons through backward propagation, 
these networks can establish associations between data and features. Deep 
learning, which involves adding more layers and neurons to the network, 
allows for the recognition of complex patterns in data, but also requires a 
larger amount of data for training. Despite this challenge, deep learning 
continues to thrive with the help of parallel processing and has found 
applications in areas such as self-driving cars, security, drug development, 
and medical image diagnosis [31-40]. Unlike conventional machine learning, 
deep learning can automatically extract features and recognize patterns in 
data, making it a powerful tool. Generating the desired amount of training 
data can be achieved through data augmentation techniques. Deep learning 
offers an advantage in addressing similar issues in microfluidics due to the 
finite and time-independent nature of the design space. 

 
Synthesis of Chemical Compounds 

Predicting chemical reactions and synthesizing molecules are 
essential tasks in organic chemistry and materials science [33-45]. It is crucial 
to be able to determine the reaction mechanism and product from a set of 
starting molecules, as well as identify the required molecules and reaction 
mechanism for a desired product. However, with the vast number of potential 
organic compounds, developing predictive tools for synthetic routes is a 
challenging and important endeavor. The process of discovering and 
optimizing chemical synthesis is labor-intensive and expensive. Recently, 
there have been advancements in using robots guided by machine-
intelligence statistical models to automate the exploration and discovery of 
chemical syntheses. These new approaches have the potential to revolutionize 
the field. 

 



Journal of Sustainable Technologies and Infrastructure Planning  

 

                          
J

S
T

IP
-2022 

Computational Flow Design in Microfluidics 
Various types of pumps, including syringe-driven, peristaltic, pressure-

driven, piezoelectric, electro-osmotic, and microvalve-based peristaltic 
micropumps, can be used to control the flow in microfluidics [20]32]. In 
applications where precise control and synchronization of flow boundary 
location is necessary, dynamic laminar flow control is achieved through 
pistons or syringe pumps. Micropumps that consist of microvalves or 
piezoelectric valves are often essential components as they can be integrated 
into microdevices and facilitate the development of micro-total analysis 
systems. By combining machine learning techniques with a fully 
programmable platform, real-time detection of the status of a biochip and 
identification of potential attacks on a real-world bioassay can be achieved. 
There are practical applications for multiphase flow, including 
biotechnology, manufacturing, and microfluidics [32-50]. By using neural 
networks trained with physical knowledge, we can quickly model the flow 
pattern in two-phase fluid mixing. This approach is comparable to classical 
computational fluid dynamic solutions, which typically require a large 
amount of computational resources. Additionally, combinatorial multiphase 
flow can be used to assemble colloidal materials in microfluidics. Machine 
learning can also enhance the predictability of material characteristics, which 
is crucial for designing such materials. By developing an AI algorithm to 
predict multiphase fluid dynamics, we can expedite and improve the design 
of microfluidic chips for these applications. 
 
AI Models for Droplet Microfluidics 

Microfluidics, a branch of science that deals with tiny amounts of fluids, 
has a subfield called droplet microfluidics [42-51]. This subfield specifically 
focuses on the handling and control of droplets in small channels. The 
manipulation of these droplets is crucial for conducting chemical and 
biological tests, as well as for creating, combining, and dividing droplets. The 
main principles of droplet microfluidics involve the use of small channels and 
small amounts of fluids to create, manipulate, and analyze droplets. 
Typically, droplets are formed by breaking up a continuous stream of fluid 
into small, uniform droplets using various techniques. The process of creating 
and operating microdroplets takes advantage of the unique physical and 
chemical properties of multiphase fluids as they flow through microchannels 
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and structures in microfluidic chips. Each microdroplet can be seen as an 
independent unit of reaction since they are separated and do not mix with 
each other, preventing contamination. Droplet microfluidics is widely 
utilized in different fields, especially in chemical analysis and life sciences, 
due to its exceptional advantages. It allows for the manipulation of single 
cells and precise monitoring of dynamic processes. Innovative techniques 
based on droplets have been developed to detect various cellular components, 
such as DNA, RNA, proteins, and other substances produced by metabolism. 

The advent of droplet microfluidic technology has transformed many 
traditional molecular biology methods, offering innovative platforms for 
techniques like PCR, RT-PCR, ELISA, and more [32-49]. This technology 
has vast applications in drug screening, microcapsule synthesis, and single-
molecule analysis. Additionally, it proves valuable in environmental analysis 
and has the potential to produce unique functional materials that are 
challenging to obtain through conventional synthesis methods. Machine 
learning techniques can be employed to segment and classify droplets in 
images. For automated droplet detection and content analysis, various 
versions of CNN-based object detectors like YOLO have been utilized, 
achieving remarkable frame rates. Deep learning techniques are also 
employed to track droplets and extract their dynamics using brightfield and 
fluorescence microscopy [45-51]. Once desired droplets are detected and 
classified, fluid routing or sorting can be incorporated into downstream 
microfluidic components for isolation. Automated droplet routing has been 
successfully demonstrated using deep reinforcement learning and 
evolutionary algorithms. 

 
Challenges in Applying AI Models for Droplet Microfluidics 

While advancements in AI and machine learning have improved 
droplet microfluidics, there remain challenges to be addressed [10, 12-15]. 
Previous studies have primarily focused on combining water and mineral oil, 
which is not ideal for biomedical applications that prefer fluorinated oil and 
phosphate buffer saline (PBS). Additionally, these studies often assume 
access to microfluidic fabrication facilities, which is not always feasible, 
limiting the implementation of microfluidic solutions in remote areas. 
Furthermore, most published papers have only explored a single architecture, 
relying on previous works or personal preference. It is crucial to compare 
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different approaches, especially for future research that involves more 
parameters or complex fluids. AI offers the advantage of generating a large 
number of experimental parameters in a sequential manner, enabling 
automated iteration and pattern recognition. Consequently, there are 
numerous applications that utilize AI to automate microfluidics for large-
scale experimentation in medicine, material science, and energy 
development. 

 
Conclusion 
The field of microfluidics is rapidly progressing as it focuses on manipulating 
small amounts of fluid at the microscale. A primary obstacle in this field is 
the control and analysis of the intricate fluid dynamics that occur on such a 
small level. Recently, there has been a growing interest in combining AI with 
microfluidics to tackle this challenge. AI has the potential to completely 
transform microfluidics by enabling the creation of intelligent control 
systems that can adapt to changing circumstances in real-time. Additionally, 
AI-powered image analysis techniques can automatically identify, 
categorize, and track objects of interest within microfluidic systems. This 
provides valuable insights and predictions regarding their dynamics. The 
integration of AI and microfluidics could result in the development of more 
advanced lab-on-a-chip diagnostic devices, more efficient drug delivery 
systems, and more versatile monitoring platforms. To acquire more reliable 
statistical data, multiple tests and results are necessary. This can be achieved 
through parallelizing experiments, the ability to simultaneously screen large 
numbers of compounds, and the capability to identify rare events within large 
pools of organisms or molecules. 
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