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Abstract 

The convergence of Internet of Things (IoT) technology with intelligent 

infrastructure is transforming urban environments into smart cities capable of 

dynamic, real-time decision-making. Deep learning plays a pivotal role in this 

transformation by enabling the analysis of vast and complex IoT data streams to 

support responsive and adaptive infrastructure systems. This paper explores the deep 

learning-based integration of IoT and intelligent infrastructure, highlighting the 

methodologies and technologies that facilitate real-time decision-making in smart 

environments. We discuss various deep learning architectures, such as 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Graph Neural Networks (GNNs), and their applications in processing IoT data for 

predictive analytics, anomaly detection, and real-time control. We address 

challenges related to data heterogeneity, latency, and scalability, and propose 

solutions for effective data fusion and model deployment. With using deep learning, 

IoT, and intelligent infrastructure, smart environments can achieve enhanced 

efficiency, resilience, and adaptability. 
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Introduction 

The rapid advancement of Internet of Things (IoT) technology has led to the 

proliferation of interconnected devices and sensors that collect and transmit data in 

real-time across various domains, including transportation, energy management, 

public safety, and environmental monitoring. This massive influx of data provides 

valuable insights that can be leveraged to enhance the efficiency and functionality 

of urban infrastructure, transforming cities into smart environments capable of 

real-time decision-making. As IoT devices become more prevalent, the ability to 

gather, analyze, and act on data from a multitude of sources has emerged as a key 

driver of smart city development. Smart cities harness this technology to improve 

the quality of life for their residents through enhanced services, better resource 

management, and increased operational efficiency. 

Figure 1. IoT 

Intelligent infrastructure, equipped with advanced sensors and communication 

systems, plays a crucial role in the development of smart cities by enabling the 

seamless integration and analysis of IoT data. These infrastructures facilitate the 

real-time monitoring and management of urban systems, such as transportation 
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networks, energy grids, and water supply systems, thereby supporting the dynamic 

adaptation to changing conditions and demands. The integration of IoT in urban 

infrastructure allows for the continuous collection of data, providing a 

comprehensive view of city operations and enabling proactive maintenance and 

management. For instance, smart transportation systems can use data from 

connected vehicles and traffic sensors to optimize traffic flow, reduce congestion, 

and improve public transportation efficiency. Similarly, smart energy management 

systems can utilize data from various sources to balance supply and demand, 

reduce energy consumption, and integrate renewable energy sources more 

effectively. 

 

Figure 2. Deep Learning-Based IoT System for Remote Monitoring 

However, the complexity and volume of IoT data pose significant challenges for 

traditional data processing and analytics techniques. The diverse nature of IoT 

data, which can include structured data from sensors, unstructured data from social 

media, and semi-structured data from devices, requires advanced analytical 

methods to derive meaningful insights. Traditional data processing techniques 

often struggle to keep up with the high velocity, volume, and variety of IoT data, 

necessitating the adoption of more sophisticated approaches to handle these 

challenges effectively. The sheer scale of data generated by IoT devices also 

demands robust storage and computing infrastructure to support data processing 

and analysis. 
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Deep learning, a subset of artificial intelligence characterized by neural networks 

with multiple layers, offers powerful tools for analyzing large-scale, heterogeneous 

IoT data streams, facilitating real-time decision-making and adaptive control. Deep 

learning algorithms can automatically learn and improve from experience without 

being explicitly programmed, making them particularly well-suited for handling 

the dynamic and complex nature of IoT data. These algorithms can identify 

patterns, anomalies, and trends within vast datasets, enabling more accurate 

predictions and informed decision-making in smart city applications. For example, 

in the context of smart transportation, deep learning models can analyze real-time 

traffic data to predict congestion and suggest optimal routes for vehicles, thereby 

improving traffic management and reducing travel times. 

In addition to improving operational efficiency, deep learning can enhance public 

safety in smart cities by enabling the detection of unusual activities and potential 

security threats. By analyzing data from surveillance cameras, social media, and 

other sources, deep learning algorithms can identify suspicious behavior and alert 

authorities to potential risks, enhancing the ability to respond to incidents quickly 

and effectively. This capability is particularly valuable in crowded urban areas, 

where timely detection and response to security threats are crucial for maintaining 

public safety. 

Moreover, deep learning can support environmental monitoring and management 

by analyzing data from sensors deployed in various urban environments. For 

instance, deep learning models can process data from air quality sensors to monitor 

pollution levels and predict potential health risks. This information can be used to 

implement measures to improve air quality, such as adjusting traffic flow or 

promoting the use of public transportation. Similarly, deep learning can be used to 

analyze data from water quality sensors to detect contaminants and ensure the 

safety of drinking water supplies. 

The integration of deep learning with IoT data also enables the development of 

smart systems for energy management. By analyzing data from smart meters, 

weather forecasts, and other sources, deep learning algorithms can optimize energy 

consumption and distribution, reducing costs and improving the efficiency of 

energy systems. For example, deep learning models can predict energy demand 

patterns and adjust the operation of heating, ventilation, and air conditioning 

(HVAC) systems in real-time to match demand, reducing energy waste and 

enhancing comfort for building occupants. Additionally, deep learning can 
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facilitate the integration of renewable energy sources into the grid by predicting 

fluctuations in energy production and demand, enabling more effective 

management of energy resources. 

One of the significant advantages of using deep learning for IoT data analysis in 

smart cities is its ability to handle large volumes of data with high accuracy. Deep 

learning models can process and analyze data from millions of IoT devices 

simultaneously, providing real-time insights and enabling quick decision-making. 

This capability is essential for managing the complex and interconnected systems 

that characterize smart cities, where delays in data processing and decision-making 

can lead to inefficiencies and disruptions. 

However, the implementation of deep learning in smart city applications is not 

without challenges. One of the primary concerns is the need for substantial 

computational resources to train and deploy deep learning models. Training deep 

learning models requires large datasets and significant processing power, which 

can be costly and time-consuming. Moreover, the deployment of these models in 

real-time applications necessitates robust and scalable computing infrastructure to 

ensure timely and accurate analysis of IoT data. Addressing these challenges 

requires collaboration between technology providers, city planners, and 

policymakers to develop and implement solutions that can support the 

computational demands of deep learning in smart cities. 

Another challenge is the need for high-quality data to train deep learning models 

effectively. The accuracy and reliability of deep learning predictions depend on the 

quality of the data used for training, which can be a challenge in the context of IoT 

data. IoT devices can generate noisy, incomplete, or biased data, which can impact 

the performance of deep learning models. Ensuring data quality requires robust 

data collection, cleaning, and preprocessing techniques to filter out noise and 

address data biases. Additionally, the integration of data from multiple sources 

poses challenges related to data compatibility and interoperability, which must be 

addressed to enable seamless data analysis and integration. 

Privacy and security concerns also play a critical role in the deployment of deep 

learning in smart cities. The use of IoT data for deep learning applications involves 

the collection and analysis of large amounts of personal and sensitive information, 

raising concerns about data privacy and security. Ensuring the protection of 

individual privacy and preventing unauthorized access to data are essential for 
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gaining public trust and acceptance of smart city technologies. This requires the 

implementation of robust data protection measures, including encryption, access 

controls, and data anonymization techniques, to safeguard data privacy and 

security. 

Despite these challenges, the potential benefits of integrating deep learning with 

IoT data in smart cities are substantial. The ability to analyze large-scale, 

heterogeneous data streams in real-time enables more efficient and effective 

management of urban systems, leading to improved quality of life for city 

residents. Deep learning can enhance public safety, optimize resource 

management, and support environmental sustainability, making it a valuable tool 

for the development of smart cities. 

Looking ahead, the continued advancement of deep learning and IoT technologies 

is expected to drive further innovations in smart city applications. The 

development of more advanced deep learning algorithms and models, combined 

with improvements in IoT device capabilities and data analytics, will enable even 

more sophisticated and effective solutions for smart city challenges. For instance, 

the integration of deep learning with edge computing, which involves processing 

data closer to the source rather than relying on centralized cloud computing, can 

enhance the efficiency and responsiveness of smart city applications by reducing 

latency and bandwidth requirements. 

Furthermore, the adoption of deep learning and IoT technologies in smart cities 

can support the development of new services and business models, driving 

economic growth and creating new opportunities for innovation. For example, the 

use of IoT data for predictive maintenance can enable service providers to offer 

more efficient and cost-effective maintenance solutions, reducing downtime and 

improving the reliability of urban infrastructure. Similarly, the analysis of IoT data 

can support the development of new transportation services, such as dynamic ride-

sharing and on-demand public transportation, which can improve mobility and 

reduce traffic congestion in urban areas. 

The integration of deep learning with IoT data represents a significant 

advancement in the development of smart cities, offering powerful tools for real-

time data analysis and decision-making. By enabling the efficient and effective 

management of urban systems, deep learning can enhance the quality of life for 

city residents, improve public safety, optimize resource management, and support 
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environmental sustainability. However, realizing the full potential of deep learning 

in smart city applications requires addressing challenges related to computational 

resources, data quality, privacy, and security. As technology continues to evolve, 

the collaboration between technology providers, city planners, and policymakers 

will be essential to developing and implementing solutions that can harness the 

power of deep learning and IoT data for the benefit of smart cities. The future of 

smart cities will likely be shaped by the continued advancements in deep learning 

and IoT technologies, leading to more intelligent, efficient, and responsive urban 

environments that can adapt to the needs and demands of their residents in real-

time. 

This paper aims to provide a comprehensive overview of the deep learning-based 

integration of IoT and intelligent infrastructure, focusing on methodologies and 

technologies that enable real-time decision-making in smart environments. We will 

explore the roles of various deep learning architectures, including CNNs, RNNs, 

and GNNs, in processing IoT data for applications such as predictive analytics, 

anomaly detection, and real-time control. We will also discuss the challenges 

associated with integrating deep learning with IoT and intelligent infrastructure, 

such as data heterogeneity, latency, and scalability, and propose solutions for 

effective data fusion and model deployment. By examining these aspects, we seek 

to demonstrate how deep learning can enhance the capabilities of smart 

environments, contributing to more efficient, resilient, and adaptive urban 

infrastructure systems. 

Internet of Things (IoT) and Intelligent Infrastructure 

The Internet of Things (IoT) refers to a network of interconnected devices and 

sensors that communicate and exchange data over the internet. These devices, 

ranging from simple sensors to complex machines, collect and transmit data in 

real-time, providing continuous monitoring and control capabilities across various 

applications. IoT technology is integral to the development of intelligent 

infrastructure, which encompasses systems such as smart grids, intelligent 

transportation, and urban planning, aimed at optimizing resource use, enhancing 

safety, and improving quality of life in urban environments. 

Intelligent infrastructure systems leverage IoT data to monitor conditions, predict 

potential issues, and enable dynamic responses. For example, smart grids use IoT 

sensors to monitor electricity consumption and distribution, enabling real-time 
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adjustments to balance supply and demand. Intelligent transportation systems 

utilize IoT data from traffic sensors and vehicles to optimize traffic flow and 

reduce congestion. The integration of IoT with intelligent infrastructure facilitates 

the development of smart environments that can adapt to changing conditions and 

make informed decisions based on real-time data. 

Introduction to Deep Learning 

Deep learning involves the use of neural networks with multiple layers that can 

learn representations of data with various levels of abstraction. These models are 

capable of processing and analyzing large and complex datasets, making them 

well-suited for handling the vast amounts of data generated by IoT devices. Key 

deep learning architectures relevant to IoT and intelligent infrastructure include: 

• Convolutional Neural Networks (CNNs): Effective for analyzing spatial 

data such as images and videos, useful in applications like object 

detection, image classification, and visual monitoring. 

• Recurrent Neural Networks (RNNs): Suitable for processing sequential 

data and time series, making them ideal for applications involving 

temporal patterns such as traffic flow prediction and sensor data analysis. 

• Graph Neural Networks (GNNs): Designed to handle data structured as 

graphs, useful for modeling relationships and interactions in networks such 

as power grids, transportation systems, and communication networks. 

Each of these architectures offers unique capabilities for processing different types 

of IoT data, enabling real-time decision-making and adaptive control in smart 

environments. 

The Role of Deep Learning in IoT Integration 

Deep learning enhances the integration of IoT and intelligent infrastructure by 

providing advanced methods for analyzing and interpreting IoT data. By learning 

complex patterns and extracting high-level features from raw data, deep learning 

models can support various applications, including predictive analytics, anomaly 

detection, and real-time control. These capabilities enable smart environments to 

respond dynamically to real-time data, optimize operations, and improve decision-

making. 

The integration of deep learning with IoT involves several key steps: 
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1. Data Collection: Gathering data from diverse IoT devices and sensors, 

including environmental conditions, infrastructure performance, and user 

interactions. 

2. Data Preprocessing: Cleaning, normalizing, and transforming the 

collected data to create a consistent and high-quality dataset for analysis. 

3. Model Training: Using deep learning models to learn patterns and 

features from the preprocessed data, enabling predictive analytics and 

anomaly detection. 

4. Real-Time Analysis: Deploying trained models to analyze IoT data in 

real-time, providing insights and supporting dynamic decision-making. 

5. Adaptive Control: Using the outputs of deep learning models to adjust 

and optimize infrastructure operations based on real-time data and 

predicted trends. 

By following these steps, deep learning can enhance the capabilities of smart 

environments, enabling more efficient and adaptive infrastructure systems. 

Deep Learning Architectures for IoT Data Processing 

Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of deep learning model 

particularly effective for analyzing spatial data, such as images and videos, making 

them well-suited for applications involving visual monitoring and object detection 

in IoT-enabled intelligent infrastructure. CNNs can process high-dimensional data 

from cameras and imaging sensors, extracting features related to objects, patterns, 

and anomalies. 

In smart environments, CNNs can be used for various applications, including: 

• Surveillance and Security: Analyzing video feeds from security cameras 

to detect suspicious activities, identify intruders, and monitor public 

spaces. 

• Infrastructure Monitoring: Detecting defects and damages in 

infrastructure components, such as cracks in bridges or wear on road 

surfaces, using high-resolution images captured by drones or stationary 

cameras. 
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• Traffic Management: Identifying vehicle types, tracking traffic flow, and 

detecting congestion from traffic camera footage. 

To implement CNNs for IoT data processing, the process involves collecting visual 

data, preprocessing it to enhance quality and consistency, and training the CNN 

model on labeled datasets containing examples of normal and abnormal conditions. 

The trained model can then analyze real-time or batch-processed visual data to 

detect objects, patterns, and anomalies, providing valuable insights for real-time 

decision-making and adaptive control in smart environments. 

Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) 

networks, are designed to handle sequential data and time series, making them 

ideal for analyzing temporal patterns in IoT data. RNNs can capture dependencies 

over time, enabling the prediction of trends and the detection of anomalies in data 

streams generated by IoT sensors. 

Applications of RNNs in IoT-enabled intelligent infrastructure include: 

• Predictive Maintenance: Analyzing sensor data from machinery and 

infrastructure components to predict potential failures and schedule 

maintenance before issues arise. 

• Traffic Flow Prediction: Using historical traffic data to predict future 

traffic patterns, optimize signal timings, and reduce congestion. 

• Energy Management: Forecasting energy consumption based on 

historical usage patterns and environmental conditions, enabling more 

efficient distribution and load balancing in smart grids. 

Implementing RNNs for IoT data processing involves collecting time series data 

from sensors, preprocessing it to handle missing values and normalize ranges, and 

training the RNN or LSTM model on the preprocessed data. The model learns to 

recognize temporal patterns and dependencies, enabling it to predict future trends 

and detect anomalies in real-time data streams, supporting dynamic decision-

making and optimization in smart environments. 

Graph Neural Networks (GNNs) 
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Graph Neural Networks (GNNs) are a type of deep learning model that can process 

data structured as graphs, making them suitable for analyzing relationships and 

interactions in networks such as power grids, transportation systems, and 

communication networks. GNNs can model the spatial and structural properties of 

these networks, enabling the analysis of complex interactions and the detection of 

anomalies. 

Applications of GNNs in IoT-enabled intelligent infrastructure include: 

• Smart Grids: Analyzing the structure and flow of electricity in power 

grids to detect anomalies, optimize distribution, and prevent outages. 

• Transportation Networks: Modeling the interactions between different 

components of transportation systems, such as intersections and road 

segments, to optimize traffic flow and identify bottlenecks. 

• Communication Networks: Monitoring and analyzing the performance of 

communication networks to detect issues, optimize routing, and improve 

connectivity. 

To implement GNNs for IoT data processing, the process involves representing the 

infrastructure network as a graph, collecting data on the interactions and properties 

of network components, and training the GNN model on this graph data. The 

model learns to capture the spatial dependencies and interactions in the network, 

enabling it to analyze complex relationships and detect anomalies, supporting real-

time decision-making and adaptive control in smart environments. 

Integration Strategies 

Data Fusion and Preprocessing 

The integration of deep learning with IoT-enabled intelligent infrastructure requires 

effective data fusion and preprocessing strategies to handle the diverse and 

heterogeneous data generated by IoT devices. Data fusion involves combining data 

from multiple sources to create a unified representation that captures the various 

aspects of the infrastructure system. This can include: 

• Feature-Level Fusion: Combining features extracted from different data 

types, such as visual, temporal, and spatial data, into a single feature vector 

for analysis. 
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• Decision-Level Fusion: Integrating the outputs of different models, such 

as object detection, trend prediction, and anomaly detection, to make a 

final decision. 

Preprocessing the collected data is essential to ensure consistency and quality. This 

includes operations such as cleaning, normalizing, and transforming the data to 

handle missing values, noise, and variations in format. Effective data fusion and 

preprocessing help create a high-quality dataset that enhances the performance and 

reliability of deep learning models. 

Model Training and Deployment 

Training deep learning models for IoT data processing involves using the 

preprocessed data to learn patterns and features that support real-time decision-

making and adaptive control. This process includes defining the architecture of the 

deep learning models, such as CNNs for visual data, RNNs for time series data, 

and GNNs for graph data, and training the models using labeled datasets. 

Deployment of the trained models involves integrating them with the IoT-enabled 

infrastructure system to analyze real-time data streams and support dynamic 

decision-making. This includes deploying the models on servers, cloud platforms, 

or edge devices that can handle the computational requirements and ensure real-

time processing capabilities. Developing interfaces and workflows that allow the 

models to access and process IoT data in real-time is critical for effective 

integration. 

Real-Time Decision-Making and Control 

The outputs of deep learning models can be used to support real-time decision-

making and adaptive control in smart environments. This involves analyzing the 

model outputs to identify patterns, trends, and anomalies, and using this 

information to adjust and optimize infrastructure operations. Examples include: 

• Adaptive Traffic Control: Using predictions of traffic flow and 

congestion to adjust signal timings and optimize traffic movement in real-

time. 

• Dynamic Energy Management: Using forecasts of energy consumption 

and demand to optimize the distribution and load balancing of electricity 

in smart grids. 
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• Automated Surveillance: Using object detection and anomaly detection 

to monitor public spaces and infrastructure components, triggering alerts 

and responses to potential security threats or defects. 

Real-time decision-making and control require developing systems and interfaces 

that allow for the seamless integration of deep learning model outputs with 

infrastructure management and control processes. This includes creating 

dashboards and visualization tools that provide actionable insights and support 

dynamic responses to changing conditions. 

Challenges and Future Directions 

Data Heterogeneity and Integration 

The integration of IoT data with deep learning models involves handling data from 

diverse sources with varying formats, resolutions, and qualities. Data heterogeneity 

poses challenges for data fusion and model training, as inconsistencies and 

variations in data can affect the performance and accuracy of deep learning 

models. 

Future research should focus on developing techniques for effective data 

integration, including advanced data fusion methods, standardization of data 

formats, and adaptive preprocessing strategies. Enhancing the ability to handle 

heterogeneous data can improve the robustness and reliability of deep learning-

based systems for IoT and intelligent infrastructure. 

Latency and Real-Time Processing 

Real-time decision-making in smart environments requires processing IoT data 

with low latency to enable timely responses to changing conditions. The 

computational demands of deep learning models can pose challenges for achieving 

real-time processing, particularly for complex and large-scale infrastructure 

systems. 

Future research should explore techniques for reducing latency, such as edge 

computing, distributed processing, and model optimization. Developing 

lightweight and efficient deep learning models that can operate in real-time 

environments can enhance the responsiveness and effectiveness of smart 

infrastructure systems. 
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Scalability and Deployment 

Scaling deep learning models for deployment across extensive IoT-enabled 

infrastructure networks involves managing the computational and data processing 

requirements for large-scale systems. Ensuring the scalability of deep learning-

based solutions is critical for their practical application in smart environments. 

Future research should focus on developing scalable deep learning architectures 

and deployment strategies, including hierarchical learning, federated learning, and 

cloud-based solutions. Enhancing the scalability of deep learning models can 

facilitate their deployment across large and complex infrastructure systems, 

enabling more comprehensive and effective real-time decision-making. 

Integration with Emerging Technologies 

Integrating deep learning with emerging technologies such as edge computing, 

blockchain, and 5G can enhance the capabilities of IoT-enabled intelligent 

infrastructure. Edge computing can reduce latency and bandwidth requirements by 

processing data closer to the source, while blockchain can provide secure and 

decentralized data storage and communication. The deployment of 5G can offer 

faster and more reliable connectivity, supporting the real-time analysis and control 

of IoT data. 

Future research should explore the potential of these technologies to complement 

and enhance deep learning-based solutions for IoT and intelligent infrastructure. 

Developing integrated frameworks that leverage the strengths of these technologies 

can create more efficient, secure, and responsive smart environments. 

Conclusion 

The integration of deep learning with IoT and intelligent infrastructure enables 

real-time decision-making in smart environments, enhancing the efficiency, 

resilience, and adaptability of urban infrastructure systems. By leveraging deep 

learning architectures such as CNNs, RNNs, and GNNs, smart environments can 

analyze diverse and complex IoT data streams, supporting applications such as 

predictive analytics, anomaly detection, and adaptive control. 

Addressing challenges related to data heterogeneity, latency, and scalability is 

essential for realizing the full potential of deep learning-based solutions for IoT-

enabled intelligent infrastructure. Future research should focus on developing 
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techniques for effective data integration, reducing latency, and enhancing 

scalability, as well as exploring the integration of emerging technologies to 

complement and enhance deep learning capabilities. 

As smart cities continue to evolve, the deep learning-based integration of IoT and 

intelligent infrastructure will play a critical role in transforming urban 

environments into dynamic, responsive, and intelligent systems. By advancing 

these technologies and addressing the associated challenges, we can create smarter, 

more resilient cities that enhance the quality of life for their residents and support 

sustainable urban development.  (1, 2)  (3) (4, 5) (6)   (7)  (8) (9)  (10)  (11)  (12) 

(13) (14)   (15)  (16) (17) (18)   (19, 20) (21) (22, 23)  (24) (25, 26)  (27) (28, 29)  

(30) (31, 32) (33) (34) (35)   (36) (37)  (38)  (39) (40)   (41)  (42) (43)  (44)  (45) 

(46)  (47)  (48) (49)   (50)  (51) (52)  (53)  (54) (55)  (56)  (57) (58)  (59)  (60) (61)  

(62) (63)   (64) (65) (66) (67, 68) (69) (70, 71) (72) (73, 74) (75) (76, 77) (78) (79, 

80) (81) (82, 83) (84) (85, 86) (87) (88, 89) (90, 91) (92, 93) (94, 95) (96, 97) 
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